A maximum length sequence is a type of pseudorandom binary sequence. They are bit sequences generated using maximal linear feedback shift registers and are so called because they are periodic and reproduce every binary sequence that can be represented by the shift registers. An MLS is also sometimes called an n-sequence or an m-sequence. MLSs are spectrally flat, with the exception of a near-zero DC term. These sequences may be represented as coefficients of irreducible polynomials in a polynomial ring over Z/2Z. Practical applications for MLS include measuring impulse responses. They are also used as a basis for deriving pseudo-random sequences in digital communication systems that employ direct-sequence spread spectrum and frequency-hopping spread spectrumtransmission systems, optical dielectric multilayer reflector design, and in the efficient design of some fMRI experiments.
Generation
MLS are generated using maximal linear feedback shift registers. An MLS-generating system with a shift register of length 4 is shown in Fig. 1. It can be expressed using the following recursive relation: where n is the time index and represents modulo-2 addition. For bit values 0 = FALSE or 1 = TRUE, this is equivalent to the XOR operation. As MLS are periodic and shift registers cycle through every possible binary value, registers can be initialized to any state, with the exception of the zero vector.
MLS are inexpensive to implement in hardware or software, and relatively low-order feedback shift registers can generate long sequences; a sequence generated using a shift register of length 20 is 220 − 1 samples long.
Properties of maximum length sequences
MLS have the following properties, as formulated by Solomon Golomb.
Balance property
The occurrence of 0 and 1 in the sequence should be approximately the same. More precisely, in a maximum length sequence of length there are ones and zeros. The number of ones equals the number of zeros plus one, since the state containing only zeros cannot occur.
Run property
A "run" is a sub-sequence of consecutive "1"s or consecutive "0"s within the MLS concerned. The number of runs is the number of such sub-sequences. Of all the "runs" in the sequence :
If a linear time invariant system's impulse response is to be measured using a MLS, the response can be extracted from the measured system output y by taking its circular cross-correlation with the MLS. This is because the autocorrelation of a MLS is 1 for zero-lag, and nearly zero for all other lags; in other words, the autocorrelation of the MLS can be said to approach unit impulse function as MLS length increases. If the impulse response of a system is h and the MLS is s, then Taking the cross-correlation with respect tos of both sides, and assuming that φss is an impulse Any signal with an impulsive autocorrelation can be used for this purpose, but signals with high crest factor, such as the impulse itself, produce impulse responses with poor signal-to-noise ratio. It's commonly assumed that the MLS would then be the ideal signal, as it consists of only full-scale values and its digital crest factor is the minimum, 0 dB. However, after analog reconstruction, the sharp discontinuities in the signal produce strong intersample peaks, degrading the crest factor by 4-8 dB or more, increasing with signal length, making it worse than a sine sweep. Other signals have been designed with minimal crest factor, though it's unknown if it can be improved beyond 3 dB.
Cohn and Lempel showed the relationship of the MLS to the Hadamard transform. This relationship allows the correlation of an MLS to be computed in a fast algorithm similar to the FFT.