Each Mach-O file is made up of one Mach-O header, followed by a series of load commands, followed by one or more segments, each of which contains between 0 and 255 sections. Mach-O uses the REL relocation format to handle references to symbols. When looking up symbols Mach-O uses a two-level namespace that encodes each symbol into an 'object/symbol name' pair that is then linearly searched for, first by the object and then the symbol name. The basic structure—a list of variable-length "load commands" that reference pages of data elsewhere in the file—was also used in the executable file format for Accent. The Accent file format was in turn, based on an idea from Spice Lisp.
Multi-architecture binaries
Under NeXTSTEP, OPENSTEP, macOS, and iOS, multiple Mach-O files can be combined in a multi-architecture binary. This allows a single binary file to contain code to support multiple instruction set architectures. For example, a multi-architecture binary for iOS can have 6 instruction set architectures, namely ARMv6, ARMv7, ARMv7s, ARMv8, x86 and x86_64.
Minimum OS version
With the introduction of Mac OS X 10.6 platform the Mach-O file underwent a significant modification that causes binaries compiled on a computer running 10.6 or later to be executable only on computers running Mac OS X 10.6 or later. The difference stems from load commands that the dynamic linker, in previous Mac OS X versions, does not understand. Another significant change to the Mach-O format is the change in how the Link Edit tables function. In 10.6 these new Link Edit tables are compressed by removing unused and unneeded bits of information, however Mac OS X 10.5 and earlier cannot read this new Link Edit table format. To make backwards-compatible executables, the linker flag "-mmacosx-version-min=" can be used.
Other implementations
Some versions of NetBSD have had Mach-O support added as part of an implementation of binary compatibility, which allowed some Mac OS 10.3 binaries to be executed. For Linux, a Mach-O loader was written by Shinichiro Hamaji that can load 10.6 binaries. As a more extensive solution based on this loader, the Darling Project aims at providing a complete environment allowing OS X applications to run on Linux. For the Ruby programming language, the ruby-macho library provides an implementation of a Mach-O binary parser and editor.