Luyten's Star


Luyten's Star is a red dwarf in the constellation Canis Minor located at a distance of approximately from the Sun. It has a visual magnitude of 9.9, making it too faint to be viewed with the unaided eye. It is named after Willem Jacob Luyten, who, in collaboration with Edwin G. Ebbighausen, first determined its high proper motion in 1935.

Properties

This star is approximately a quarter the mass of the Sun and has 35% of the Sun's radius. Luyten's Star is at the maximum mass at which a red dwarf can be fully convective, which means that most if not all of the star forms an extended convection zone. It has a stellar classification of M3.5V, with the V luminosity class indicating this is a main-sequence star that is generating energy through the thermonuclear fusion of hydrogen at its core. The projected rotation rate of this star is too low to be measured, but is no greater than 1 km/s. Measurements of periodic variation in surface activity suggest a leisurely rotation period of roughly 116 days. The effective temperature of the star's outer envelope is a relatively cool 3,150 K, giving the star the characteristic red-orange hue of an M-type star.
At present, Luyten's Star is moving away from the Solar System. The closest approach occurred about 13,000 years ago when it came within 3.67 parsecs. The star is currently located 1.2 light years distant from Procyon, and the latter would appear as a visual magnitude −4.5 star in the night sky of one of the planets orbiting Luyten's Star. The closest encounter between the two stars occurred about 600 years ago when Luyten's Star was at its minimal distance of about 1.12 ly from Procyon. The space velocity components of Luyten's Star are U = +16, V = −66 and W = −17 km/s.

Planetary system

In March 2017, two candidate planets were discovered orbiting Luyten's Star. The outer planet, GJ 273b, is a Super Earth in its star's habitable zone. It has a mass of 2.89 ± 0.26 Earth masses and orbits at a distance of 0.09110 ± 0.00002 AU, completing one orbital period in 18.650 ± 0.006 days. While the planet is on the innermost edge of the star's conservative habitable zone, the incident flux is only 1.06S⊕, so it may be potentially habitable if water and an atmosphere are present; depending on albedo, its equilibrium temperature could be anywhere between 206 and 293 Kelvin. The inner planet, GJ 273c, is one of the lightest exoplanets detected by radial velocities, with a mass of only 1.18 ± 0.16 Earth masses. However, it orbits much further in, with an orbital period of only 4.7234 ± 0.00004 days.
GJ 273b is one of the closest known planets in its star's habitable zone.
In 2019, two more candidate planets were detected by radial velocity, making a total of four known planets in the system.
In October 2017, "Sónar Calling GJ 273b", a project by and , a music festival in Barcelona, transmitted a series of radio signals towards Luyten's star from a radar antenna at Ramfjordmoen, Norway. The signal consisted of a scientific and mathematical tutorial on how to decode the messages and was accompanied by 33 encoded musical compositions by various musicians. A second signal series was transmitted on May 14, 15, and 16, 2018. Assuming anyone is listening, the soonest a response could be expected would be 2036.