List of mathematical symbols by subject


This list of mathematical symbols by subject shows a selection of the most common symbols that are used in modern mathematical notation within formulas, grouped by mathematical topic. As it is virtually impossible to list all the symbols ever used in mathematics, only those symbols which occur often in mathematics or mathematics education are included. Many of the characters are standardized, for example in DIN 1302 General mathematical symbols or DIN EN ISO 80000-2 Quantities and units – Part 2: Mathematical signs for science and technology.
The following list is largely limited to non-alphanumeric characters. It is divided by areas of mathematics and grouped within sub-regions. Some symbols have a different meaning depending on the context and appear accordingly several times in the list. Further information on the symbols and their meaning can be found in the respective linked articles.

Guide

The following information is provided for each mathematical symbol:
;Symbol: The symbol as it is represented by LaTeX. If there are several typographic variants, only one of the variants is shown.
;Usage: An exemplary use of the symbol in a formula. Letters here stand as a placeholder for numbers, variables or complex expressions. Different possible applications are listed separately.
;Interpretation: A short textual description of the meaning of the formula in the previous column.
;Article: The Wikipedia article that discusses the meaning of the symbol.
;LaTeX: The LaTeX command that creates the icon. Characters from the ASCII character set can be used directly, with a few exceptions. High-and low-position is indicated via the characters ^ and _ and is not explicitly specified.
;HTML: The icon in HTML, if it is defined as a named mark. Non-named characters can be indicated in the form &#xnnnn by specifying the Unicode code point of the next column. High-and low-position can be indicated via <sup></sup> and <sub></sub>.
;Unicode: The code point of the corresponding Unicode character. Some characters are combining and require the entry of additional characters. For brackets, the code points of the opening and the closing forms are specified.

Set theory

Definition symbols

SymbolUsageInterpretationArticleLaTeXHTMLUnicode
is defined byDefinition\colonU+003A
is defined as equal toDefinition\colonU+003A
is defined as equivalent toDefinition\colonU+003A

Set construction

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
Empty setEmpty set\varnothing,
\emptyset
&empty;U+2205
Set consisting of the elements and so onSet \U+007B/D
Set of elements, that satisfy the conditionSet \midU+007C
:Set of elements, that satisfy the conditionSet \colonU+003A

Set operations

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
Union of the sets andUnion \cup&cup;U+222A
Intersection of the sets andIntersection \cap&cap;U+2229
Difference of sets andDifference \setminusU+2216
Symmetric difference of sets andSymmetric difference\triangle&Delta;U+2206
Cartesian product of sets andCartesian product\times&times;U+2A2F
Disjoint union of sets andDisjoint union\dot\cupU+228D
Disjoint union of sets andDisjoint union\uplus&uplus;U+228E
Disjoint union of sets andDisjoint union\sqcupU+2294
Complement of the setComplement \mathrmU+2201
◌̅Complement of the setComplement \overlineU+0305
?Power set of the setPower set\mathcalU+1D4AB
?Power set of the setPower set\mathfrakU+1D513
Power set of the setPower set\wpU+2118
This is the greatest lower bound, infimum, or meet of all elements operated on.Infimum and supremum\bigwedgeU+22C0
This is the least upper bound, supremum, or join of all elements operated on.Infimum and supremum\bigveeU+22C1

Set relations

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
is a proper subset ofSubset\subset&sub;U+2282
is a proper subset ofSubset\subsetneqU+228A
is a subset ofSubset\subseteq&sube;U+2286
is a proper superset ofSuperset\supset&sup;U+2283
is a proper superset ofSuperset\supsetneqU+228B
is a superset ofSuperset\supseteq&supe;U+2287
is not a proper subset of\not\subsetU+2284
is not a proper superset ofSuperset\not\supsetU+2285
is not a subset of\not\subseteqU+2288
is not a superset ofSuperset\not\supseteqU+2289
Element is in the setElement \in&isin;U+2208
Element is in the setElement \ni, \owns&ni;U+220B
Element is not in the setElement \notin&notin;U+2209
Element is not in the setElement \not\niU+220C

Note: The symbols and are used inconsistently and often do not exclude the equality of the two quantities.

Number sets

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
?Algebraic numbersAlgebraic number\mathbbU+1D538
Complex numbersComplex number\mathbbU+2102
QuaternionsQuaternion\mathbbU+210D
Natural numbersNatural number\mathbbU+2115
?Nonnegative numbersNatural number\mathbbU+1D541
?Nonnegative numbersNatural number\mathbbU+1D54E
Rational numbersRational number\mathbbU+211A
Real numbersReal number\mathbbU+211D
IntegersInteger\mathbbU+2124

Cardinality

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
Cardinality of the setCardinality\vertU+007C
#Cardinality of the setCardinality\#U+0023
?Cardinality of the continuumCardinality of the continuum\mathfrakU+1D520
,,...Infinite cardinalsAleph number\alephU+2135
,,...Beth numbersBeth number\bethU+2136

Arithmetic

Arithmetic operators

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
+added toAddition++U+002B
subtracted toSubtraction-U+2212
multiplied byMultiplication\cdot&middot;U+22C5
multiplied byMultiplication\times&times;U+2A2F
:divided byDivision ::U+003A
divided byDivision /&frasl;U+2215
÷divided byDivision \div&divide;U+00F7
divided byDivision \fracU+2044
Negative of the number or the additive inverse ofUnary minus-&minus;U+2212
±Plus or minusPlus or minus sign\pm&plusmn;U+00B1
Minus or plusPlus or minus sign\mpU+2213
Term is evaluated firstBracketU+0028/9
Term is evaluated firstBracketU+005B/D

Equality signs

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
=equalsEquality =U+003D
does not equalInequality \neq&ne;U+2260
is identical toIdentity \equiv&equiv;U+2261
is approximately equal toApproximation\approx&asymp;U+2248
is similar toEquivalence class\sim&sim;U+223C
is proportional toProportionality \propto&prop;U+221D
corresponds to\widehatU+2259
is equal to ?Questioning equal sign\oversetU+225F

Comparison

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
<is less thanComparison <&lt;U+003C
>is greater thanComparison >&gt;U+003E
is less than or equal toComparison \le, \leq&le;U+2264
is less than or equal toComparison \leqq&#8806;U+2266
is greater than or equal toComparison \ge, \geq&ge;U+2265
is greater than or equal toComparison \geqq&#8807;U+2267
is much smaller thanComparison \ll&#8810;U+226A
is much bigger thanComparison \gg&#8811;U+226B
is greater than or less than
or is different than
\gtrless&#8823;U+2277

Divisibility

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
dividesDivisibility\midU+2223
does not divideDivisibility\nmidU+2224
and are relatively primeRelatively prime\perp&perp;U+22A5
Greatest common divisor of andGreatest common divisor\sqcapU+2293
Greatest common divisor of andGreatest common divisor\wedge&and;U+2227
Least common multiple of andLeast common multiple\sqcup&and;U+2294
Least common multiple of andLeast common multiple\vee&or;U+2228
and are congruent moduloModular arithmetic\equiv&equiv;U+2261

Intervals

SymbolUsageInterpretationArticleLaTeXHTMLUnicode
Closed interval between andInterval
U+0028/9
U+005B/D
Open interval between andInterval
U+0028/9
U+005B/D
Open interval between andInterval
U+0028/9
U+005B/D
Right-open interval between andInterval
U+0028/9
U+005B/D
Right-open interval between andInterval
U+0028/9
U+005B/D
Left-open interval between andInterval
U+0028/9
U+005B/D
Left-open interval between andInterval
U+0028/9
U+005B/D

Elementary functions

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
Absolute value ofAbsolute value\vertU+007C
Biggest whole number less than or equal toFloor and ceiling functionsU+005B/D
⌊ ⌋Biggest whole number less than or equal toFloor and ceiling functions\lfloor \rfloor&lfloor; &rfloor;U+230A/B
⌈ ⌉Smallest whole number greater than or equal toFloor and ceiling functions\lceil \rceil&lceil; &rceil;U+2308/9
Square root ofSquare root\sqrt&radic;U+221A
-th root ofnth root\sqrt&radic;U+221A
%percentPercent\%U+0025

Note: the power function is not represented by its own icon, but by the positioning of the exponent as a superscript.

Complex numbers

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
Real part of complex numberComplex number\ReU+211C
Imaginary part of complex numberComplex number\ImU+2111
◌̅Complex conjugate ofComplex conjugate\barU+0305
*Complex conjugate ofComplex conjugate\ast&lowast;U+002A
Absolute value of complex numberAbsolute value\vertU+007C
Argument ofArgument \arg

Mathematical constants

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
πPi, or Archimedes' constantPi\piU+03C0
or eEuler's constante e or \rm or U+0065
φGolden ratioGolden ratio\varphi&phi;U+03C6
or iImaginary unit Imaginary uniti or \rm or U+0069

See also: mathematical constant for symbols of additional mathematical constants.

Calculus

Sequences and series

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
Sum from to or over all elements in setSummation\sum&sum;U+2211
Product from to or over all elements in setProduct \prod&prod;U+220F
Coproduct from to or over all elements in setCoproduct\coprodU+2210
Sequence of elementsSequenceU+0028/9
Sequence tends to limitLimit of a sequence\to&rarr;U+2192
tends to infinityInfinity\infty&infin;U+221E

Functions

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
Function maps from set to setFunction \to&rarr;U+2192
Function maps from set to setFunction \to&rarr;U+2192
Function maps element to elementFunction \mapsto&mapstoright;U+21A6
Function maps element to elementFunction \mapsto&mapstoright;U+21A6
Image of element under functionImage ( or )U+0028/9
Image of set under functionImage ( or )U+0028/9
Image of set under functionImage [ or ]U+005B/D
Restriction of function to setRestriction \vert|U+007C
Placeholder for a variable as argument of functionFree variable\cdotU+22C5
Inverse function ofInverse function-1U+207B
Composition of functions and ;Function composition\circ&#8728;U+2218
Convolution of functions andConvolution\ast&lowast;U+2217
◌̂Fourier transform of functionFourier transform\hatU+0302

Limits

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
Limit of function as approaches from belowLimit of a function\uparrow&uarr;U+2191
Limit of function as approaches from belowLimit of a function\nearrowU+2197
Limit of function as approachesLimit of a function\to&rarr;U+2192
Limit of function as approaches from aboveLimit of a function\searrowU+2198
Limit of function as approaches from aboveLimit of a function\downarrow&darr;U+2193
Limit of a function as approaches from the rightLimit of a function^+&#8314;U+207A
Limit of a function as approaches from the leftLimit of a function^-&#8315;U+207B

Asymptotic behaviour

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
Function is asymptotically equal to functionAsymptotic analysis\sim&sim;U+223C
oFunction grows slower thanBig O notationoU+006F
?Function grows not substantially faster thanBig O notation\mathcalU+1D4AA
ΘFunction grows as fast asBig O notation\Theta&Theta;U+0398
ΩFunction grows not substantially slower thanBig O notation\Omega&Omega;U+03A9
ωFunction grows faster thanBig O notation\omega&omega;U+03C9

Differential calculus

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
′ ″First or second derivative of functionLagrange's notation\prime&prime;U+2032,U+2033
Alternative notation for fourth, fifth, or sixth derivative of functionLagrange's notation^&#8547;
Alternative notation for fourth, fifth, or -th derivative of functionLagrange's notationU+0028/9
◌̇First or second derivative of function with respect to time Newton's notation\dot, \ddotU+0307
dAn infinitesimally small change inLeibniz's notationddU+0064
dDerivative of function with respect to variableLeibniz's notationddU+0064
dDerivative of function with respect to variableLeibniz's notationddU+0064
dSecond derivative of function with respect to variableLeibniz's notationddU+0064
dTotal differential of functionLeibniz's notationddU+0064
Partial derivative of function with respect to variablePartial derivative\partial&part;U+2202

Integral calculus

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
,Definite integral between and or over setIntegral\int&int;U+222B
Curve integral along curveCurve integral\ointU+222E
Surface integral over surfaceSurface integral\iintU+222C
Volume integral over volumeVolume integral\iiintU+222D

Vector calculus

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
Gradient of functionGradient\nabla&nabla;U+2207
Divergence of vector fieldDivergence\nabla&nabla;U+2207
Curl of vector fieldCurl \nabla&nabla;U+2207
Laplace operator of functionLaplace operator\Delta&Delta;U+2206
D'Alembert operator of functionD'Alembert operator\squareU+25A1

Topology

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
Boundary of setBoundary \partial&part;U+2202
˚Interior of setInterior \circ&deg;U+02DA
◌̅Closure of setClosure \overlineU+0305
◌̇Punctured neighbourhood of pointPunctured neighbourhood\dotU+0307

Functional analysis

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
Topological dual space of topological vector spaceDual space\prime&prime;U+2032/3
Bidual space of normed vector spaceDual space\prime&prime;U+2032/3
◌̂Completion of metric spaceComplete metric space\hatU+0302
Embedding of topological vector space intoEmbedding\hookrightarrowU+21AA

Linear algebra and geometry

Elementary geometry

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
[ ]Line segment between points andLine segmentU+005B/D
Length of line segment between points andLine segment\vertU+007C
̅Length of line segment between points andLine segment\overlineU+0305
Vector between points andEuclidean vector
and Affine space
\vecU+20D7
Angle between line segments andAngle\angle&ang;U+2220
Triangle with vertices, andTriangle\triangleU+25B3
Quadrilateral with vertices,, andQuadrilateral\squareU+25A1
Lines and are parallelParallel \parallelU+2225
Lines and are not parallelParallel \nparallelU+2226
Lines and are orthogonalOrthogonality\perp&perp;U+27C2

Vectors and matrices

SymbolUsageArticleLaTeX
Row vector comprising elements throughVector \begin
...
\end

or

\left
Column vector comprising elements throughVector \begin
...
\end

or

\left
Matrix comprising elements throughMatrix \begin
...
\end

or

\left

Vector calculus

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
Dot product of vectors andDot product\cdot&middot;U+22C5
Dot product of vectors andDot productU+0028/9
⟨ ⟩
Dot product of vectors andDot product\langle \rangle&lang; &rang;U+27E8/9
Cross product of vectors andCross product\times&times;U+2A2F
[ ]Cross product of vectors andCross productU+005B/D
Triple product of vectors, andTriple productU+0028/9
Dyadic product of vectors andDyadic product\otimes&otimes;U+2297
Exterior product of vectors andExterior algebra\wedge&and;U+2227
Length of vectorEuclidean norm\vertU+007C
Norm of vectorNorm \Vert, \|U+2016
̂Normalized vector of vectorUnit vector\hatU+0302

Matrix calculus

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
Product of matrices andMatrix multiplication\cdot&middot;U+22C5
Hadamard product of matrices andHadamard product \circU+2218
Hadamard division of matrices andHadamard product \oslashU+2298
Kronecker product of matrices andKronecker product\otimes&otimes;U+2297
TTransposed matrix of matrixTransposed matrix^TU+0054
 Transposed matrix of matrixTransposed matrix\intercalU+22BA
HConjugate transpose of matrixConjugate transpose^HU+0048
*Conjugate transpose of matrixConjugate transpose\ast&lowast;U+002A
Conjugate transpose of matrixConjugate transpose\dagger&dagger;U+2020
Inverse matrix of matrixInverse matrix-1U+207B
+Moore–Penrose pseudoinverse of matrixMoore–Penrose pseudoinverse++U+002B
Determinant of MatrixDeterminant\vertU+007C
Norm of matrixMatrix norm\Vert, \|U+2016

Vector spaces

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
+Sum of vector spaces andDirect sum of modules++U+002B
Direct sum of vector spaces andDirect sum of modules\oplus&oplus;U+2295
Direct product of vector spaces andDirect product\times&times;U+2A2F
Tensor product of vector spaces andTensor product\otimes&otimes;U+2297
/Quotient space of vector space by subspaceQuotient space /&frasl;U+002F
Orthogonal complement of subspaceOrthogonal complement\perp&perp;U+27C2
*Dual space of vector spaceDual space\ast&lowast;U+002A
0Annihilator space of the set of vectorsDual space0U+0030
⟨ ⟩Linear hull of the set of vectorsLinear hull\langle \rangle&lang; &rang;U+27E8/9

Algebra

Relations

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
Composition of relations andComposition of relations\circU+2218
Operation of elements and Operation \circU+2218
Operation of elements and Operation \bullet&bull;U+2219
Operation of elements and Operation \ast&lowast;U+2217
Order relation between elements andOrder relation\leq&le;U+2264
Element is a predecessor of elementSuccessor ordinal\precU+227A
Element is a successor of elementSuccessor ordinal\succU+227B
Equivalence relation between elements andEquivalence relation\sim&sim;U+223C
[ ]Equivalence class of elementEquivalence classU+005B/D
/Quotient set of set by equivalence relationQuotient set/&frasl;U+002F
Inverse relation of relationInverse relation-1U+207B
+Transitive closure of relationTransitive closure+U+002B
*Reflexive closure of relationReflexive closure\ast&lowast;U+002A

Group theory

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
Groups and are isomorphicGroup isomorphism\simeqU+2243
Groups and are isomorphicGroup isomorphism\cong&cong;U+2245
Direct product of groups andDirect product\times&times;U+2A2F
Semidirect product of groups andSemidirect product\rtimesU+22CA
Wreath product of groups andWreath product\wrU+2240
is a subgroup of groupSubgroup\leq&le;U+2264
<is a proper subgroup of groupSubgroup\lt&lt;U+003C
is a normal subgroup of groupNormal subgroup\vartriangleleftU+22B2
/Quotient group of group by normal subgroupQuotient group/&frasl;U+002F
:Index of subgroup in groupIndex of a subgroup\colonU+003A
⟨ ⟩Subgroup generated by setGenerating set of a group\langle \rangle&lang; &rang;U+27E8/9
[ ]Commutator of elements andCommutatorU+005B/D

Field theory

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
/Extension of field over fieldField extension/&frasl;U+002F
Extension of field over fieldField extension\midU+007C
:Extension of field over fieldField extension\colonU+003A
Degree of field extension overDegree of a field extension\colonU+003A
̅Algebraic closure of fieldAlgebraic closure\overlineU+0305
Extension of a field by adding an algebraic elementField extension, Algebraic number fieldU+0028/9
?Field of real or complex numbersField \mathbbU+1D542
?Finite fieldFinite field\mathbbU+1D53D

Ring theory

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
Group of units of ringGroup of units\ast&lowast;U+2217
Group of units of ringGroup of units\times&times;U+2A2F
is an ideal of ring
Ideal \vartriangleleftU+22B2
/Quotient ring of ring by idealQuotient ring/&frasl;U+002F
[ ]Polynomial ring over ring with variablePolynomial ringU+005B/D
[ ]Ring of formal power series and ring of formal Laurent seriesFormal power series U+005B/D

Combinatorics

SymbolUsageInterpretationArticleLaTeXHTMLUnicode
Number of permutations of elementsFactorial!U+0021
Number of derangements of elements Derangement!U+0021
Number of involutions without fixed points Double factorial!U+0021
Number of -combinations of elements without repetitionCombination\binomU+0028/9
Number of permutations of elements of which are identicalMultinomial coefficient\binomU+0028/9
Number of -combinations of elements with repetitionMultiset)U+0028/9
Rising factorial from with factorsPochhammer symbol\overlineU+0305
Falling factorial from with factorsPochhammer symbol\underlineU+0332
Product of all primes up toPrimorial\#U+0023

Stochastics

Probability theory

SymbolUsageInterpretationArticleLaTeXHTMLUnicode
Probability of eventProbability measurePU+2119
Probability of event given eventConditional probability\midU+007C
Expected value of the random variableExpected valueEU+1D53C
Variance of the random variableVarianceVU+1D54D
Standard deviation of the random variableStandard deviation\sigma&sigma;U+03C3
Covariance of random variables andCovariance\sigma&sigma;U+03C3
Correlation of random variables andCorrelation\rho&rho;U+03C1
Random variable has distributionProbability distribution\sim&sim;U+223C
Random variable has distribution approximatelyProbability distribution\approx&asymp;U+2248
Event is independent from eventIndependence \perp&perp;U+22A5

Statistics

SymbolUsageInterpretationArticleLaTeXHTMLUnicode
Average of the valuesAverage\bar̅U+0305
Average over all values in the set Average\langle \rangle&lang; &rang;U+27E8/9
Estimator for parameterEstimator\hat̂U+0302

Logic

Operators

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
Proposition and propositionLogical conjunction\land&and;U+2227
Proposition or proposition Logical disjunction\lor&or;U+2228
Proposition follows from proposition and vice versaLogical equivalence\Leftrightarrow&hArr;U+21D4
Proposition follows from proposition and vice versaLogical equivalence\leftrightarrow&harr;U+2194
From proposition follows propositionLogical consequence\Rightarrow&rArr;U+21D2
From proposition follows propositionLogical consequence\rightarrow&rarr;U+2192
Either proposition or propositionExclusive or\oplus&oplus;U+2295
Either proposition or propositionExclusive or\veebarU+22BB
Either proposition or propositionExclusive or\dot\lorU+2A52
¬Not propositionLogical negation\lnot&not;U+00AC
̅Not propositionLogical negation\barU+0305
If B then A, or not B without A. It is not to be confused with the assignment operator in computer science.Converse implication\leftarrowU+2190

Quantifiers

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
For all elementsUniversal quantification\forall&forall;U+2200
For all elementsUniversal quantification\bigwedgeU+22C0
At least one element existsExistential quantification\exists&exist;U+2203
At least one element existsExistential quantification\bigveeU+22C1
∃!Exactly one element existsUniqueness quantification\exists!&exist;!U+2203!
Exactly one element existsUniqueness quantification\dot\bigveeU+2A52
No element existsExistential quantification\nexistsU+2204

Deduction symbols

SymbolUnicode
symbol
UsageInterpretationArticleLaTeXHTMLUnicode
Proposition can be syntactically derived from propositionPropositional calculus, Turnstile\vdashU+22A2
Proposition follows semantically from propositionInference\modelsU+22A8
Proposition is universally trueTautology \modelsU+22A8
Proposition is universally trueTautology \topU+22A4
Proposition is contradictoryContradiction\bot&perp;U+22A5
Proposition is true, therefore proposition is trueDeductive reasoning\thereforeU+2234
Proposition is true, because is trueDeductive reasoning\becauseU+2235
End of proofQ.E.D.\blacksquareU+220E
End of proofQ.E.D.\BoxU+25A1

Alphanumeric Symbols

Digits

Alphabets

NameSub-typeAlphabet
Double-struck? ? ℂ ? ? ? ? ℍ ? ? ? ? ? ℕ ? ℙ ℚ ℝ ? ? ? ? ? ? ? ℤ
Double-struck? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
Script/Calligraphy? ℬ ? ? ℰ ℱ ? ℋ ℐ ? ? ℒ ℳ ? ? ? ? ℛ ? ? ? ? ? ? ? ?
Script/Calligraphy? ? ? ? ℯ ? ℊ ? ? ? ? ? ? ? ℴ ? ? ? ? ? ? ? ? ? ? ?
Script/CalligraphyBold? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
Script/CalligraphyBold? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
Fraktur? ? ℭ ? ? ? ? ℌ ℑ ? ? ? ? ? ? ? ? ℜ ? ? ? ? ? ? ? ℨ
Fraktur? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
FrakturBold? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
FrakturBold? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
Mono-space? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
Mono-space? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
GreekΑ Β Γ ᴦ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Ῥ ☧ Σ Ϲ Τ Υ υ Φ Χ Ψ Ω
Greekα β ᵝ ᵦ γ ᵞ ᵧ δ ᵟ ε ϵ ϶ ζ η Ͱ ͱ θ ϑ ϴ ᶿ ι ᶥ ℩ κ ϰ λ ᴧ μ µ ν ξ ο π ϖ ρ ῥ ῤ ϱ ϼ ᴩ ᵨ σ ς ϲ Ͻ ͻ Ͼ ͼ Ͽ ͽ τ ϒ φ ϕ χ ᵡ ᵪ ψ ᴪ ω
GreekItalic? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
GreekItalic? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
GreekNon-Latin Italic? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
GreekBold? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
GreekBold? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
GreekBold Italic? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
GreekBold Italic? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Greek Letters