Liquid-to-gas ratio


An important parameter in wet scrubbing systems is the rate of liquid flow. It is common in wet scrubber terminology to express the liquid flow as a function of the gas flow rate that is being treated. This is commonly called the liquid-to-gas ratio and uses the units of gallons per 1,000 actual cubic feet or litres per cubic metre.
Expressing the amount of liquid used as a ratio enables systems of different sizes to be readily compared.
For particulate removal, the liquid-to-gas ratio is a function of the mechanical design of the system; while for gas absorption this ratio gives an indication of the difficulty of removing a pollutant. Most wet scrubbers used for particulate control operate with liquid-to-gas ratios in the range of 4 to 20 gallons per 1,000 actual cubic foot.
Depending on scrubber design, a minimum volume of liquid is required to "wet" the scrubber internals and create sufficient collection targets. After a certain optimum point, adding excess liquid to a particulate wet scrubber does not increase efficiency and in fact, could be counter-productive by causing excessive pressure loss. Liquid-to-gas ratios for gas absorption are often higher, in the range of 20 to 40 gallons per 1,000 actual cubic foot.
L/G ratio illustrates a number of points about the choice of wet scrubbers used for gas absorption. For example, because flue-gas desulfurization systems must deal with heavy particulate loadings, open, simple designs are used.
Also, the liquid-to-gas ratio for the absorption process is higher than for particle removal and gas velocities are kept low to enhance the absorption process.
Solubility is a very important factor affecting the amount of a pollutant that can be absorbed. Solubility governs the amount of liquid required and the necessary contact time. More soluble gases require less liquid. Also, more soluble gases will be absorbed faster.