Legendre's equation


In mathematics, Legendre's equation is the Diophantine equation
The equation is named for Adrien Marie Legendre who proved in 1785 that it is solvable in integers x, y, z, not all zero, if and only if
bc, −ca and −ab are quadratic residues modulo a, b and c, respectively, where a, b, c are nonzero, square-free, pairwise relatively prime integers, not all positive or all negative.