Keystroke programming


Keystroke programming describes a specific way of programming by which each keystroke on a device or application is recorded in some way and then played back so that the recorded key-presses can be repeated multiple times. Keystroke programming is most commonly but not exclusively found in programmable calculators, but there are keystroke-programmable software applications, too, for example Vim

Example: TI Calculators

The Texas Instruments TI-58/TI-58C/TI-59 calculators were programmable, and program storage took the form of a sequence of codes which corresponded to the position of keys on the calculator keypad. Here is a simplified diagram of the basic key layout:
x1x2x3x4x5
1x
2x
3x
4x
5x
6x
7x
8x
9x

Each key is assigned a two-digit code; for most keys, the tens digit comes from the row number and the units digit comes from the column number.
Now consider a very simple program, which adds 2 to the number being displayed, and then stops. The program is entered starting from program location 000, and looks like this:
LocationContentsMeaningComments
00085+
001022
00295=compute result
00391R/Sstop program

To use this program, you would enter the number n to be operated on, press to ensure the current program location was 000, then to start execution. When the program stops, the display will be showing the number n + 2.
You can see that the codes 85, 95 and 91 correspond to the positions of the keys labelled, and on the grid above, but the code for the is not 83 as you would expect from the grid position, but 02. This last code was chosen to be more easily understandable by a human trying to read the program. There is no row 0, so the codes 00.. 09 are used to represent the keys ...

Context-Dependent Interpretations

These TI calculators allowed for addressing up to 100 data memory locations, numbered 00 to 99. A keystroke sequence like would be encoded as 42 42. In this case the first 42 is the key code for the key, but the second 42 is not a key code, but a memory register number. The calculator knows to interpret it as such because that’s what has to follow the code for the key.
Program addresses were 3 digits, potentially allowing programs to consist of up to 1000 steps, numbered 000 to 999. A branch instruction, for example would be encoded as 61 03 45. In this case the hundreds digit of the branch destination is in the units digit of the second instruction byte, with a zero tens digit; and the remaining digits are in the third instruction byte.
A code sequence like 61 11, on the other hand, represents the keystrokes , which is a branch to the location marked by the symbolic label. The calculator can tell this is a symbolic branch, rather than a branch to a numbered location, because the tens digit of the byte immediately following the opcode is not zero.
Most of the keys on the keypad can be used as symbolic labels. For example, sequences like and are legitimate, provided that and have in fact been defined as labels somewhere in the program.

Modifier Keys

Most of the keys had multiple functions, depending on whether or had been pressed beforehand. invoked the “inverse” of the following function, and was recorded in a program as a separate keystroke, while invoked a completely different function which was written on the keypad faceplate just above the key. For example, pressing invoked the function, while gave you the arcsine.
The code for this alternate function is derived from that of the original key function by adding 5 to the units digit. Thus, the key codes corresponding to the position of the key itself are never used as opcodes. Here is the table of the codes produced with the prefix:
x6x7x8x9x0
1x
2x
3x
4x
5x
6x
7x
8x
9x

Merged Keystrokes

The key allows for indirection: wherever a reference to a memory register or a program location is allowed, this key can be used to fetch the actual value from a memory register. For example, the key sequence means to fetch the value in memory register 10, and use that value in turn as the number of a memory register whose contents are to be fetched as the current operand. However, in this case the cannot be encoded as code 40, because the code sequence 43 40 would be interpreted as , not .
But, because of the use of the 00.. 09 codes for the .. keys, the codes 62-64, 72-74, 82-84 and 92 are available for other uses. So most of these are reallocated to represent op sequences:
x2x3x4
6x
7x
8x
9x

Thus, the key sequence would be encoded as 73 10.
Note the use of code 92 for ; this was not necessary for reasons of ambiguity, but was done to save space with such a common sequence.