Jaime Carbonell
Jaime Guillermo Carbonell was a computer scientist who made seminal contributions to the development of natural language processing tools and technologies. His extensive research in machine translation resulted in the development of several state-of-the-art language translation and artificial intelligence systems. He earned his B.S. degrees in Physics and in Mathematics from MIT in 1975 and did his Ph.D. under Dr. Roger Schank at Yale University in 1979. He joined Carnegie Mellon University as an assistant professor of computer science in 1979 and lived in Pittsburgh from then. He was affiliated with the Language Technologies Institute, Computer Science Department, Machine Learning Department, and Computational Biology Department at Carnegie Mellon.
His interests spanned several areas of artificial intelligence, language technologies and machine learning. In particular, his research focused on areas such as text mining and in new theoretical frameworks such as a unified utility-based theory bridging information retrieval, summarization, free-text question-answering and related tasks. He also worked on machine translation, both high-accuracy knowledge-based MT and machine learning for corpus-based MT.
Career
Carbonell was the Allen Newell Professor of Computer Science and head of the Language Technologies Institute at Carnegie Mellon University. He joined Carnegie Mellon in 1979 and became a key faculty member in the artificial intelligence area. He was appointed full professor in 1987 and chaired professor in 1995.He did his undergraduate studies at MIT, getting dual degrees in Mathematics and Physics. He received his Ph.D. in Computer Science from Yale University in 1979.
At the time of his appointment, Carbonell was the youngest chaired professor in the School of Computer Science at CMU. He was considered creative, insightful, and highly productive as a researcher. His research spanned several areas of computer science, mostly in artificial intelligence, including: machine learning, data and text mining, natural language processing, very-large-scale knowledge bases, translingual information retrieval and automated summarization. He wrote more than 300 technical papers and gave over 500 invited or refereed-paper presentations. He died following a long illness on February 28, 2020.
Research
Some of Carbonell's major scientific accomplishments included the creation of MMR technology for text summarization and informational novelty detection in search engines, invention of transformational analogy, a generalized method for case-based reasoning to re-use, modify and compose past successful plans for increasingly complex problems and Knowledge-based interlingual machine translation. He was instrumental in setting up the Computational Biolinguistics Program, a joint venture between Carnegie Mellon and the University of Pittsburgh, which combines Language Technologies and Machine Learning to model and predict genomic, proteomic and glycomic 3D structures.Carbonell was particularly well known in machine learning. He organized the first four machine learning conferences, starting with CMU in 1981. The Language Technologies Institute, founded and directed by Carbonell, achieved top honors in multiple areas. These areas include machine translation, search engines, speech synthesis, and education. LTI remains the original, largest and best-known institute for language technologies, with over $12M in annual funding and 200 researchers.
Carbonell made major technical contributions in several fields, including Creation of MMR
technology for text summarization and informational novelty detection in
search engines, Proactive machine learning for multi-source cost-sensitive active learning, Linked
conditional random fields for predicting tertiary and quaternary protein folds, Symmetric optimal
phrasal alignment method for trainable example-based and statistical machine translation, Series-
anomaly modeling for financial fraud detection and syndromic surveillance, Knowledge-based
interlingual machine translation, Robust case-frame parsing, Seeded version-space learning and
Invention of transformational and derivational analogy, generalized methods for case-based reasoning
to re-use, modify and compose past successful plans for increasingly complex problems. He was
instrumental in setting up the Computational Biolinguistics Program, which combines language technologies
and machine learning to model and predict genomic, proteomic and glycomic 3D structures.
The teams led by Carbonell achieved top honors in many areas such as first scalable high-accuracy
interlingual machine translation, first speech-to-speech machine translation, first large-scale
spider and search engine, and first trainable, large-scale protein-structure topology predictor
. Modern machine learning, co-founded by Carbonell, Michalski and Mitchell, is a fundamental
enabling technology in search engines, data mining and social networking. Starting in 1980, he co-edited
the first three books on ML, launched the ML conferences and was a co-founder and editor-in-chief of ML
Journal. Carbonell’s innovations have led to several successful start-ups: Carnegie Group,
Lycos, Wisdom, Carnegie Speech, Dynamix, and Meaningful Machines. Carbonell was the founding director of The Language Technology Institute, the preeminent
global institution in language studies, unparalleled in size and scope and has since been
adopted/imitated in Germany, Japan, and the US.
Awards and honors
- , 2015
- Best paper award, “Translingual Search” w/Yang, International Joint Conference on AI, 1997
- Allen Newell endowed chair, Carnegie Mellon University, 1995
- Elected fellow of AAAI, circa 1990
- Computer Science teaching award, Carnegie Mellon University, 1987
- Sperry Fellowship for excellence in AI research, 1986
- Herbert Simon teaching award, 1986
- "Recognition of Service" award from the ACM for the SIGART presidency, 1983–1985
- Provided congressional testimony on machine translation, 1990
Selected works
Books
- 1983. Machine learning: An artificial intelligence approach. Los Altos, CA: Morgan Kaufmann.
- 1986. Machine learning: An artificial intelligence approach. Vol. II. Los Altos, CA: Morgan-Kaufmann.
- 1986. Machine Learning: A Guide to Current Research. Kluwer Academic Publishers.
Contributions
- “Protein Quaternary Fold Recognition Using Conditional Graphical Models” IJCAI 2007
- “Context-Based Machine Translation” AMTA 2006
- “SCRFs: A New Approach for Protein Fold Recognition,’’ Journal of Computational Biology, 13,2, 2006
- “MT for Resource-Poor Languages Using Elicitation-Based Learning” Machine Translation, 2004
- ‘‘Learning Approaches for Detecting and Tracking News Events,’’ IEEE Trans I.S., 14, 4, 2000