Iwasawa group
In mathematics a group is sometimes called an Iwasawa group or M-group or modular group if its lattice of subgroups is modular.
Alternatively, a group G is called an Iwasawa group when every subgroup of G is permutable in G.
proved that a p-group G is an Iwasawa group if and only if one of the following cases happens:
In, Iwasawa's proof was deemed to have some essential gaps, which were filled by Franco Napolitani and Zvonimir Janko. has provided an alternative proof along different lines in his textbook. As part of Schmidt's proof, he proves that a finite p-group is a modular group if and only if every subgroup is permutable, by.
Every subgroup of a finite p-group is subnormal, and those finite groups in which subnormality and permutability coincide are called PT-groups. In other words, a finite p-group is an Iwasawa group if and only if it is a PT-group.Examples