Isotopes of cobalt


Naturally occurring cobalt is composed of 1 stable isotope, 59Co. 28 radioisotopes have been characterized with the most stable being 60Co with a half-life of 5.2714 years, 57Co with a half-life of 271.8 days, 56Co with a half-life of 77.27 days, and 58Co with a half-life of 70.86 days. All of the remaining radioactive isotopes have half-lives that are less than 18 hours and the majority of these have half-lives that are less than 1 second. This element also has 11 meta states, all of which have half-lives less than 15 minutes.
The isotopes of cobalt range in atomic weight from 47Co to 75Co. The primary decay mode for isotopes with atomic mass unit values less than that of the most abundant stable isotope, 59Co, is electron capture and the primary mode of decay for those of greater than 59 atomic mass units is beta decay. The primary decay products before 59Co are iron isotopes and the primary products after are nickel isotopes.
Radioactive isotopes can be produced by various nuclear reactions. For example, the isotope 57Co is produced by cyclotron irradiation of iron. The principal reaction involved is the reaction 56Fe + 2H → n + 57Co.

List of isotopes

Use of cobalt radioisotopes in medicine

Cobalt-57 is a radioactive metal that is used in medical tests; it is used as a radiolabel for vitamin B12 uptake. It is useful for the Schilling test.
Cobalt-60 is a radioactive metal that is used in radiotherapy. It produces two gamma rays with energies of 1.17 MeV and 1.33 MeV. The 60Co source is about 2 cm in diameter and as a result produces a geometric penumbra, making the edge of the radiation field fuzzy. The metal has the unfortunate habit of producing a fine dust, causing problems with radiation protection. The 60Co source is useful for about 5 years but even after this point is still very radioactive, and so cobalt machines have fallen from favor in the Western world where linacs are common.

Industrial uses for radioactive isotopes

Cobalt-60 is useful as a gamma ray source because it can be produced in predictable quantities, and for its high radioactive activity simply by exposing natural cobalt to neutrons in a reactor for a given time. The uses for industrial cobalt include:
Cobalt-57 is used as a source in Mössbauer spectroscopy of iron-containing samples. The electron capture decay of the 57Co forms an excited state of the 57Fe nucleus, which in turn decays to the ground state with emission of a gamma ray. Measurement of the gamma ray spectrum provides information about the chemical state of the iron atom in the sample.