Interpretations of quantum mechanics


An interpretation of quantum mechanics is an attempt to explain how the mathematical theory of quantum mechanics "corresponds" to reality. Although quantum mechanics has held up to rigorous and extremely precise tests in an extraordinarily broad range of experiments, there exist a number of contending schools of thought over their interpretation. These views on interpretation differ on such fundamental questions as whether quantum mechanics is deterministic or stochastic, which elements of quantum mechanics can be considered real, and what is the nature of measurement, among other matters.
Despite nearly a century of debate and experiment, no consensus has been reached among physicists and philosophers of physics concerning which interpretation best "represents" reality.

History

The definition of quantum theorists' terms, such as wave functions and matrix mechanics, progressed through many stages. For instance, Erwin Schrödinger originally viewed the electron's wave function as its charge density smeared across space, but Max Born reinterpreted the absolute square value of the wave function as the electron's probability density distributed across space.
The views of several early pioneers of quantum mechanics, such as Niels Bohr and Werner Heisenberg, are often grouped together as the "Copenhagen interpretation", though physicists and historians of physics have argued that this terminology obscures differences between the views so designated. Copenhagen-type ideas were never universally embraced, and challenges to a perceived Copenhagen orthodoxy gained increasing attention in the 1950s with the pilot-wave interpretation of David Bohm and the many-worlds interpretation of Hugh Everett III.
Moreover, the strictly formalist position, shunning interpretation, has been challenged by proposals for experiments that might one day distinguish among interpretations, as by measuring an AI consciousness or via quantum computing.
The physicist N. David Mermin once quipped, "New interpretations appear every year. None ever disappear." As a rough guide to development of the mainstream view during the 1990s and 2000s, a "snapshot" of opinions was collected in a poll by Schlosshauer et al. at the "Quantum Physics and the Nature of Reality" conference of July 2011.
The authors reference a similarly informal poll carried out by Max Tegmark at the "Fundamental Problems in Quantum Theory" conference in August 1997. The main conclusion of the authors is that "the Copenhagen interpretation still reigns supreme", receiving the most votes in their poll, besides the rise to mainstream notability of the many-worlds interpretations:

Nature

More or less, all interpretations of quantum mechanics share two qualities:
  1. They interpret a formalism—a set of equations and principles to generate predictions via input of initial conditions
  2. They interpret a phenomenology—a set of observations, including those obtained by empirical research and those obtained informally, such as humans' experience of an unequivocal world
Two qualities vary among interpretations:
  1. Ontology—claims about what things, such as categories and entities, exist in the world
  2. Epistemology—claims about the possibility, scope, and means toward relevant knowledge of the world
In philosophy of science, the distinction of knowledge versus reality is termed epistemic versus ontic. A general law is a regularity of outcomes, whereas a causal mechanism may regulate the outcomes. A phenomenon can receive interpretation either ontic or epistemic. For instance, indeterminism may be attributed to limitations of human observation and perception, or may be explained as a real existing maybe encoded in the universe. Confusing the epistemic with the ontic, like if one were to presume that a general law actually "governs" outcomes—and that the statement of a regularity has the role of a causal mechanism—is a category mistake.
In a broad sense, scientific theory can be viewed as offering scientific realism—approximately true description or explanation of the natural world—or might be perceived with antirealism. A realist stance seeks the epistemic and the ontic, whereas an antirealist stance seeks epistemic but not the ontic. In the 20th century's first half, antirealism was mainly logical positivism, which sought to exclude unobservable aspects of reality from scientific theory.
Since the 1950s, antirealism is more modest, usually instrumentalism, permitting talk of unobservable aspects, but ultimately discarding the very question of realism and posing scientific theory as a tool to help humans make predictions, not to attain metaphysical understanding of the world. The instrumentalist view is carried by the famous quote of David Mermin, "Shut up and calculate", often misattributed to Richard Feynman.
Other approaches to resolve conceptual problems introduce new mathematical formalism, and so propose alternative theories with their interpretations. An example is Bohmian mechanics, whose empirical equivalence with the three standard formalisms—Schrödinger's wave mechanics, Heisenberg's matrix mechanics, and Feynman's path integral formalism—has been demonstrated.

Interpretive challenges

  1. Abstract, mathematical nature of quantum field theories: the mathematical structure of quantum mechanics is mathematically abstract without clear interpretation of its quantities.
  2. Existence of apparently indeterministic and irreversible processes: in classical field theory, a physical property at a given location in the field is readily derived. In most mathematical formulations of quantum mechanics, measurement is given a special role in the theory, as it is the sole process that can cause a nonunitary, irreversible evolution of the state.
  3. Role of the observer in determining outcomes: the Copenhagen Interpretation implies that the wavefunction is a calculational tool, and represents reality only immediately after a measurement, perhaps performed by an observer; Everettian interpretations grant that all the possibilities can be real, and that the process of measurement-type interactions cause an effective branching process.
  4. Classically unexpected correlations between remote objects: entangled quantum systems, as illustrated in the EPR paradox, obey statistics that seem to violate principles of local causality.
  5. Complementarity of proffered descriptions: complementarity holds that no set of classical physical concepts can simultaneously refer to all properties of a quantum system. For instance, wave description A and particulate description B can each describe quantum system S, but not simultaneously. This implies the composition of physical properties of S does not obey the rules of classical propositional logic when using propositional connectives. Like contextuality, the "origin of complementarity lies in the non-commutativity of operators" that describe quantum objects.
  6. Rapidly rising intricacy, far exceeding humans' present calculational capacity, as a system's size increases: since the state space of a quantum system is exponential in the number of subsystems, it is difficult to derive classical approximations.
  7. Contextual behaviour of systems locally: Quantum contextuality demonstrates that classical intuitions in which properties of a system hold definite values, independent of the manner of their measurement, fails even for local systems. Also, physical principles such as Leibniz's Principle of the identity of indiscernibles no longer apply in the quantum domain, signalling that most classical intuitions may be incorrect about the quantum world.

    Influential Interpretations

Other interpretations

As well as the mainstream interpretations discussed below, a number of other interpretations have been proposed which have not made a significant scientific impact for whatever reason. These range from proposals by mainstream physicists to the more occult ideas of quantum mysticism.

The EPR paradox

The current usage of realism and completeness originated in the 1935 paper in which Einstein and others proposed the EPR paradox. In that paper the authors proposed the concepts element of reality and the completeness of a physical theory. They characterised element of reality as a quantity whose value can be predicted with certainty before measuring or otherwise disturbing it, and defined a complete physical theory as one in which every element of physical reality is accounted for by the theory. In a semantic view of interpretation, an interpretation is complete if every element of the interpreting structure is present in the mathematics. Realism is also a property of each of the elements of the maths; an element is real if it corresponds to something in the interpreting structure. For example, in some interpretations of quantum mechanics the ket vector associated to the system state is said to correspond to an element of physical reality, while in other interpretations it is not.
Determinism is a property characterizing state changes due to the passage of time, namely that the state at a future instant is a function of the state in the present. It may not always be clear whether a particular interpretation is deterministic or not, as there may not be a clear choice of a time parameter. Moreover, a given theory may have two interpretations, one of which is deterministic and the other not.
Local realism has two aspects:
A precise formulation of local realism in terms of a local hidden-variable theory was proposed by John Bell.
Bell's theorem, combined with experimental testing, restricts the kinds of properties a quantum theory can have, the primary implication being that quantum mechanics cannot satisfy both the principle of locality and counterfactual definiteness.
Regardless of Einstein's concerns about interpretation issues, Dirac and other quantum notables embraced the technical advances of the new theory while devoting little or no attention to interpretational aspects.

Copenhagen interpretation

The Copenhagen interpretation is the "standard" interpretation of quantum mechanics formulated by Niels Bohr and Werner Heisenberg while collaborating in Copenhagen around 1927. Bohr and Heisenberg extended the probabilistic interpretation of the wavefunction proposed originally by Max Born. The Copenhagen interpretation rejects questions like "where was the particle before I measured its position?" as meaningless. The measurement process randomly picks out exactly one of the many possibilities allowed for by the state's wave function in a manner consistent with the well-defined probabilities that are assigned to each possible state. According to the interpretation, the interaction of an observer or apparatus that is external to the quantum system is the cause of wave function collapse, thus according to Paul Davies, "reality is in the observations, not in the electron". In general, after a measurement it ceases to be relevant unless subsequent experimental observations can be performed.

Quantum information theories

al approaches have attracted growing support. They subdivide into two kinds.

The state is not an objective property of an individual system but is that information, obtained from a knowledge of how a system was prepared, which can be used for making predictions about future measurements.
...A quantum mechanical state being a summary of the observer's information about an individual physical system changes both by dynamical laws, and whenever the observer acquires new information about the system through the process of measurement. The existence of two laws for the evolution of the state vector...becomes problematical only if it is believed that the state vector is an objective property of the system...The "reduction of the wavepacket" does take place in the consciousness of the observer, not because of any unique physical process which takes place there, but only because the state is a construct of the observer and not an objective property of the physical system.

Relational quantum mechanics

The essential idea behind relational quantum mechanics, following the precedent of special relativity, is that different observers may give different accounts of the same series of events: for example, to one observer at a given point in time, a system may be in a single, "collapsed" eigenstate, while to another observer at the same time, it may be in a superposition of two or more states. Consequently, if quantum mechanics is to be a complete theory, relational quantum mechanics argues that the notion of "state" describes not the observed system itself, but the relationship, or correlation, between the system and its observer. The state vector of conventional quantum mechanics becomes a description of the correlation of some degrees of freedom in the observer, with respect to the observed system. However, it is held by relational quantum mechanics that this applies to all physical objects, whether or not they are conscious or macroscopic. Any "measurement event" is seen simply as an ordinary physical interaction, an establishment of the sort of correlation discussed above. Thus the physical content of the theory has to do not with objects themselves, but the relations between them.

Quantum Bayesianism

Quantum Bayesianism is an interpretation of quantum mechanics that takes an agent's actions and experiences as the central concerns of the theory. This interpretation is distinguished by its use of a subjective Bayesian account of probabilities to understand the quantum mechanical Born rule as a normative addition to good decision-making. QBism draws from the fields of quantum information and Bayesian probability and aims to eliminate the interpretational conundrums that have beset quantum theory.
QBism deals with common questions in the interpretation of quantum theory about the nature of wavefunction superposition, quantum measurement, and entanglement. According to QBism, many, but not all, aspects of the quantum formalism are subjective in nature. For example, in this interpretation, a quantum state is not an element of reality—instead it represents the degrees of belief an agent has about the possible outcomes of measurements. For this reason, some philosophers of science have deemed QBism a form of anti-realism. The originators of the interpretation disagree with this characterization, proposing instead that the theory more properly aligns with a kind of realism they call "participatory realism", wherein reality consists of more than can be captured by any putative third-person account of it.

Many worlds

The many-worlds interpretation is an interpretation of quantum mechanics in which a universal wavefunction obeys the same deterministic, reversible laws at all times; in particular there is no wavefunction collapse associated with measurement. The phenomena associated with measurement are claimed to be explained by decoherence, which occurs when states interact with the environment producing entanglement, repeatedly "splitting" the universe into mutually unobservable alternate histories—effectively distinct universes within a greater multiverse.

Consistent histories

The consistent histories interpretation generalizes the conventional Copenhagen interpretation and attempts to provide a natural interpretation of quantum cosmology. The theory is based on a consistency criterion that allows the history of a system to be described so that the probabilities for each history obey the additive rules of classical probability. It is claimed to be consistent with the Schrödinger equation.
According to this interpretation, the purpose of a quantum-mechanical theory is to predict the relative probabilities of various alternative histories.

Ensemble interpretation

The ensemble interpretation, also called the statistical interpretation, can be viewed as a minimalist interpretation. That is, it claims to make the fewest assumptions associated with the standard mathematics. It takes the statistical interpretation of Born to the fullest extent. The interpretation states that the wave function does not apply to an individual systemfor example, a single particlebut is an abstract statistical quantity that only applies to an ensemble of similarly prepared systems or particles. In the words of Einstein:
The most prominent current advocate of the ensemble interpretation is Leslie E. Ballentine, professor at Simon Fraser University, author of the text book Quantum Mechanics, A Modern Development.

De Broglie–Bohm theory

The de Broglie–Bohm theory of quantum mechanics is a theory by Louis de Broglie and extended later by David Bohm to include measurements. Particles, which always have positions, are guided by the wavefunction. The wavefunction evolves according to the Schrödinger wave equation, and the wavefunction never collapses. The theory takes place in a single space-time, is non-local, and is deterministic. The simultaneous determination of a particle's position and velocity is subject to the usual uncertainty principle constraint. The theory is considered to be a hidden-variable theory, and by embracing non-locality it satisfies Bell's inequality. The measurement problem is resolved, since the particles have definite positions at all times. Collapse is explained as.

Quantum Darwinism

Quantum Darwinism is a theory meant to explain the emergence of the classical world from the quantum world as due to a process of Darwinian natural selection induced by the environment interacting with the quantum system; where the many possible quantum states are selected against in favor of a stable pointer state. It was proposed in 2003 by Wojciech Zurek and a group of collaborators including Ollivier, Poulin, Paz and Blume-Kohout. The development of the theory is due to the integration of a number of Zurek’s research topics pursued over the course of twenty-five years including: pointer states, einselection and decoherence.

Transactional interpretation

The transactional interpretation of quantum mechanics by John G. Cramer is an interpretation of quantum mechanics inspired by the Wheeler–Feynman absorber theory. It describes the collapse of the wave function as resulting from a time-symmetric transaction between a possibility wave from the source to the receiver and a possibility wave from the receiver to source. This interpretation of quantum mechanics is unique in that it not only views the wave function as a real entity, but the complex conjugate of the wave function, which appears in the Born rule for calculating the expected value for an observable, as also real.

Stochastic mechanics

An entirely classical derivation and interpretation of Schrödinger's wave equation by analogy with Brownian motion was suggested by Princeton University professor Edward Nelson in 1966. Similar considerations had previously been published, for example by R. Fürth, I. Fényes, and Walter Weizel, and are referenced in Nelson's paper. More recent work on the stochastic interpretation has been done by M. Pavon. An alternative stochastic interpretation was developed by Roumen Tsekov.

Objective collapse theories

Objective collapse theories differ from the Copenhagen interpretation by regarding both the wave function and the process of collapse as ontologically objective. In objective theories, collapse occurs either randomly or when some physical threshold is reached, with observers having no special role. Thus, objective-collapse theories are realistic, indeterministic, no-hidden-variables theories. Standard quantum mechanics does not specify any mechanism of collapse; QM would need to be extended if objective collapse is correct. The requirement for an extension to QM means that objective collapse is more of a theory than an interpretation. Examples include
In his treatise The Mathematical Foundations of Quantum Mechanics, John von Neumann deeply analyzed the so-called measurement problem. He concluded that the entire physical universe could be made subject to the Schrödinger equation. He also described how measurement could cause a collapse of the wave function. This point of view was prominently expanded on by Eugene Wigner, who argued that human experimenter consciousness was critical for the collapse, but he later abandoned this interpretation.
Variations of the consciousness causes collapse interpretation include:
; Subjective reduction research: This principle, that consciousness causes the collapse, is the point of intersection between quantum mechanics and the mind/body problem; and researchers are working to detect conscious events correlated with physical events that, according to quantum theory, should involve a wave function collapse; but, thus far, results are inconclusive.
; Participatory anthropic principle : John Archibald Wheeler's participatory anthropic principle says that consciousness plays some role in bringing the universe into existence.
Other physicists have elaborated their own variations of the consciousness causes collapse interpretation; including:
can be regarded as a kind of propositional logic suitable for understanding the apparent anomalies regarding quantum measurement, most notably those concerning composition of measurement operations of complementary variables. This research area and its name originated in the 1936 paper by Garrett Birkhoff and John von Neumann, who attempted to reconcile some of the apparent inconsistencies of classical boolean logic with the facts related to measurement and observation in quantum mechanics.

Modal interpretations of quantum theory

Modal interpretations of quantum mechanics were first conceived of in 1972 by B. van Fraassen, in his paper "A formal approach to the philosophy of science." However, this term now is used to describe a larger set of models that grew out of this approach. The Stanford Encyclopedia of Philosophy describes several versions:
Several theories have been proposed which modify the equations of quantum mechanics to be symmetric with respect to time reversal.. This creates retrocausality: events in the future can affect ones in the past, exactly as events in the past can affect ones in the future. In these theories, a single measurement cannot fully determine the state of a system, but given two measurements performed at different times, it is possible to calculate the exact state of the system at all intermediate times. The collapse of the wavefunction is therefore not a physical change to the system, just a change in our knowledge of it due to the second measurement. Similarly, they explain entanglement as not being a true physical state but just an illusion created by ignoring retrocausality. The point where two particles appear to "become entangled" is simply a point where each particle is being influenced by events that occur to the other particle in the future.
Not all advocates of time-symmetric causality favour modifying the unitary dynamics of standard quantum mechanics. Thus a leading exponent of the two-state vector formalism, Lev Vaidman, states that the two-state vector formalism dovetails well with Hugh Everett's many-worlds interpretation.

Branching space-time theories

BST theories resemble the many worlds interpretation; however, "the main difference is that the BST interpretation takes the branching of history to be a feature of the topology of the set of events with their causal relationships... rather than a consequence of the separate evolution of different components of a state vector." In MWI, it is the wave functions that branches, whereas in BST, the space-time topology itself branches.
BST has applications to Bell's theorem, quantum computation and quantum gravity. It also has some resemblance to hidden-variable theories and the ensemble interpretation: particles in BST have multiple well defined trajectories at the microscopic level. These can only be treated stochastically at a coarse grained level, in line with the ensemble interpretation.

Comparisons

The most common interpretations are summarized in the table below. The values shown in the cells of the table are not without controversy, for the precise meanings of some of the concepts involved are unclear and, in fact, are themselves at the center of the controversy surrounding the given interpretation. For another table comparing interpretations of quantum theory, see reference.
No experimental evidence exists that distinguishes among these interpretations. To that extent, the physical theory stands, and is consistent with itself and with reality; difficulties arise only when one attempts to "interpret" the theory. Nevertheless, designing experiments which would test the various interpretations is the subject of active research.
Most of these interpretations have variants. For example, it is difficult to get a precise definition of the Copenhagen interpretation as it was developed and argued about by many people.
Interpre­tationYear pub­lishedAuthorDeterm­inistic?Ontic wave­function?Unique
history?
Hidden
variables?
Collapsing
wave­functions?
Observer
role?
Local
dyna­mics?
Counter­factually
definite?
Extant
universal
wave­function?
Ensemble interpretation1926Max Born
Copenhagen interpretation1927Niels Bohr, Werner Heisenberg
de Broglie–
Bohm theory
1927–
1952
Louis de Broglie, David Bohm
Quantum logic1936Garrett Birkhoff
Time-
symmetric theories
1955Satosi Watanabe
Many-worlds interpretation1957Hugh Everett
Consciousness causes collapse1961–
1993
John von Neumann, Eugene Wigner, Henry Stapp
Stochastic interpretation1966Edward Nelson
Many-minds interpretation1970H. Dieter Zeh
Consistent histories1984Robert B. Griffiths
Transactional interpretation1986John G. Cramer
Objective collapse theories1986–
1989
Ghirardi–Rimini–Weber,
Penrose interpretation
Relational interpretation1994Carlo Rovelli
QBism2010Christopher Fuchs, Ruediger Schack

The silent approach

Although interpretational opinions are openly and widely discussed today, that was not always the case. A notable exponent of a tendency of silence was Paul Dirac who once wrote: "The interpretation of quantum mechanics has been dealt with by many authors, and I do not want to discuss it here. I want to deal with more fundamental things." This position is not uncommon among practitioners of quantum mechanics. Others, like Nico van Kampen and Willis Lamb, have openly criticized non-orthodox interpretations of quantum mechanics.