Interplanetary Internet
The interplanetary Internet is a conceived computer network in space, consisting of a set of network nodes that can communicate with each other.
Interplanetary communication is greatly delayed by interplanetary distances, so a new set of protocols and technology that are tolerant to large delays and errors are required. The interplanetary Internet is a store and forward network of internets that is often disconnected, has a wireless backbone fraught with error-prone links and delays ranging from tens of minutes to even hours, even when there is a connection.
Development
Space communication technology has steadily evolved from expensive, one-of-a-kind point-to-point architectures, to the re-use of technology on successive missions, to the development of standard protocols agreed upon by space agencies of many countries. This last phase has gone on since 1982 through the efforts of the Consultative Committee for Space Data Systems, a body composed of the major space agencies of the world. It has 11 member agencies, 28 observer agencies, and over 140 industrial associates.The evolution of space data system standards has gone on in parallel with the evolution of the Internet, with conceptual cross-pollination where fruitful, but largely as a separate evolution. Since the late 1990s, familiar Internet protocols and CCSDS space link protocols have integrated and converged in several ways; for example, the successful FTP file transfer to Earth-orbiting STRV 1B on January 2, 1996, which ran FTP over the CCSDS IPv4-like Space Communications Protocol Specifications protocols. Internet Protocol use without CCSDS has taken place on spacecraft, e.g., demonstrations on the UoSAT-12 satellite, and operationally on the Disaster Monitoring Constellation. Having reached the era where networking and IP on board spacecraft have been shown to be feasible and reliable, a forward-looking study of the bigger picture was the next phase.
meeting, Los Angeles, USA, 2007. The marquee pays a humorous homage to the Ed Wood film Plan 9 from Outer Space, and the operating system Plan 9 from Bell Labs, while namedropping Internet pioneer Vint Cerf using a spoof of a then-current film Surf's Up.
The Interplanetary Internet study at NASA's Jet Propulsion Laboratory was started by a team of scientists at JPL led by Vinton Cerf and the late Adrian Hooke. Cerf is one of the pioneers of the Internet on Earth, and currently holds the position of distinguished visiting scientist at JPL. Hooke was one of the founders and directors of CCSDS.
While IP-like SCPS protocols are feasible for short hops, such as ground station to orbiter, rover to lander, lander to orbiter, probe to flyby, and so on, delay-tolerant networking is needed to get information from one region of the Solar System to another. It becomes apparent that the concept of a region is a natural architectural factoring of the Interplanetary Internet.
A region is an area where the characteristics of communication are the same. Region characteristics include communications, security, the maintenance of resources, perhaps ownership, and other factors. The Interplanetary Internet is a "network of regional internets".
What is needed then, is a standard way to achieve end-to-end communication through multiple regions in a disconnected, variable-delay environment using a generalized suite of protocols. Examples of regions might include the terrestrial Internet as a region, a region on the surface of the Moon or Mars, or a ground-to-orbit region.
The recognition of this requirement led to the concept of a "bundle" as a high-level way to address the generalized Store-and-Forward problem. Bundles are an area of new protocol development in the upper layers of the OSI model, above the with the goal of addressing the issue of bundling store-and-forward information so that it can reliably traverse radically dissimilar environments constituting a "network of regional internets".
Delay-tolerant networking was designed to enable standardized communications over long distances and through time delays. At its core is something called the Bundle Protocol, which is similar to the Internet Protocol, or IP, that serves as the heart of the Internet here on Earth. The big difference between the regular Internet Protocol and the Bundle Protocol is that IP assumes a seamless end-to-end data path, while BP is built to account for errors and disconnections — glitches that commonly plague deep-space communications.
Bundle Service Layering, implemented as the Bundling protocol suite for delay-tolerant networking, will provide general-purpose delay-tolerant protocol services in support of a range of applications: custody transfer, segmentation and reassembly, end-to-end reliability, end-to-end security, and end-to-end routing among them. The Bundle Protocol was first tested in space on the UK-DMC satellite in 2008.
An example of one of these end-to-end applications flown on a space mission is the CCSDS File Delivery Protocol, used on the comet mission, Deep Impact. CFDP is an international standard for automatic, reliable file transfer in both directions. CFDP should not be confused with Coherent File Distribution Protocol, which has the same acronym and is an IETF-documented experimental protocol for rapidly deploying files to multiple targets in a highly networked environment.
In addition to reliably copying a file from one entity to another entity, CFDP has the capability to reliably transmit arbitrary small messages defined by the user, in the metadata accompanying the file, and to reliably transmit commands relating to file system management that are to be executed automatically on the remote end-point entity upon successful reception of a file.
Protocol
The Consultative Committee for Space Data Systems packet telemetry standard defines the protocol used for the transmission of spacecraft instrument data over the deep-space channel. Under this standard, an image or other data sent from a spacecraft instrument is transmitted using one or more packets.CCSDS packet definition
A packet is a block of data with length that can vary between successive packets, ranging from 7to 65,542 bytes, including the packet header.
- Packetized data is transmitted via frames, which are fixed-length data blocks. The size of a frame, including frame header and control information, can range up to 2048 bytes.
- Packet sizes are fixed during the development phase.
Telecom processing notes
Data in a frame is typically protected from channel errors by error-correcting codes.- Even when the channel errors exceed the correction capability of the error-correcting code, the presence of errors is nearly always detected by the error-correcting code or by a separate error-detecting code.
- Frames for which uncorrectable errors are detected are marked as undecodable and typically are deleted.
Handling data loss
- When errors are present in a frame, the bits of the subband pixels are already decoded before the first bit error will remain intact, but all subsequent decoded bits in the segment usually will be completely corrupted; a single bit error is often just as disruptive as many bit errors.
- Furthermore, compressed data usually are protected by powerful, long-blocklength error-correcting codes, which are the types of codes most likely to yield substantial fractions of bit errors throughout those frames that are undecodable.
This data loss can be compensated for with the following mechanisms.
- If an erroneous frame escapes detection, the decompressor will blindly use the frame data as if they were reliable, whereas in the case of detected erroneous frames, the decompressor can base its reconstruction on incomplete, but not misleading, data.
- However, it is extremely rare for an erroneous frame to go undetected.
- For frames coded by the CCSDS Reed–Solomon code, fewer than 1 in 40,000 erroneous frames can escape detection.
- All frames not employing the Reed–Solomon code use a cyclic redundancy check error-detecting code, which has an undetected frame-error rate of less than 1 in 32,000.
Implementation
The canceled Mars Telecommunications Orbiter had been planned to establish an Interplanetary Internet link between Earth and Mars, in order to support other Mars missions. Rather than using RF, it would have used optical communications using laser beams for their higher data rates. "Lasercom sends information using beams of light and optical elements, such as telescopes and optical amplifiers, rather than RF signals, amplifiers, and antennas"
NASA JPL continued to test the DTN protocol with their Deep Impact Networking experiment on board the Deep Impact/EPOXI spacecraft in October, 2008.
In May 2009, DTN was deployed to a payload on board the ISS. NASA and BioServe Space Technologies, a research group at the University of Colorado, have been continuously testing DTN on two Commercial Generic Bioprocessing Apparatus payloads. CGBA-4 and CGBA-5 serve as computational and communications platforms which are remotely controlled from BioServe's Payload Operations Control Center in Boulder, CO. In October 2012 ISS Station commander Sunita Williams remotely operated Mocup, a "cat-sized" Lego Mindstorms robot fitted with a BeagleBoard computer and webcam, located in the European Space Operations Centre in Germany in an experiment using DTN. These initial experiments provide insight into future missions where DTN will enable the extension of networks into deep space to explore other planets and solar system points of interest. Seen as necessary for space exploration, DTN enables timeliness of data return from operating assets which results in reduced risk and cost, increased crew safety, and improved operational awareness and science return for NASA and additional space agencies.
DTN has several major arenas of application, in addition to the Interplanetary Internet, which include sensor networks, military and tactical communications, disaster recovery, hostile environments, mobile devices and remote outposts. As an example of a remote outpost, imagine an isolated Arctic village, or a faraway island, with electricity, one or more computers, but no communication connectivity. With the addition of a simple wireless hotspot in the village, plus DTN-enabled devices on, say, dog sleds or fishing boats, a resident would be able to check their e-mail or click on a Wikipedia article, and have their requests forwarded to the nearest networked location on the sled's or boat's next visit, and get the replies on its return.