Information engineering


Information engineering, also known as Information technology engineering, information engineering methodology or data engineering, is a software engineering approach to designing and developing information systems.

Overview

Information Technology Engineering involves an architectural approach for planning, analyzing, designing, and implementing applications. ITE has been defined by Steven M Davis as: "An integrated and evolutionary set of tasks and techniques that enhance business communication throughout an enterprise enabling it to develop people, procedures and systems to achieve its vision".
ITE has many purposes, including organization planning, business re-engineering, application development, information systems planning, and systems re-engineering. ITE can be used to analyze, design, and implement data structures in an enterprise. The goal of ITE is to allow for a business to improve the way it manages its resources such as capital, people, and information systems to achieve its business goals. The importance of ITE and its concepts have increased rapidly with the growth of current technology. ITE assumes that logical data representations are stable; which is the opposite to the processes that use the data, which constantly change. This allows for the logical data model, which reflects an organization's ideas, to be the basis for systems development.

History

Information technology engineering used to be known more commonly as information engineering; this changed in the early 21st century, and information engineering took on a new meaning.
Information technology engineering has a somewhat checkered history that follows two very distinct threads. It originated in Australia between 1976 and 1980, and appears first in the literature in a series of Six InDepth articles by the same name published by US Computerworld in May - June 1981. Information technology engineering first provided data analysis and database design techniques that could be used by database administrators and by systems analysts to develop database designs and systems based upon an understanding of the operational processing needs of organizations for the 1980s.
Clive Finkelstein is acknowledged as the "Father" of information technology engineering, having developed its concepts from 1976 to 1980 based on original work carried out by him to bridge from strategic business planning to information systems. He wrote the first publication on information technology engineering: a series of six in depth articles of the same name published by US Computerworld in May - June 1981. He also co-authored with James Martin the influential Savant Institute Report titled: "Information Engineering", published in Nov 1981. The Finkelstein thread evolved from 1976 as the business driven variant of ITE. The Martin thread evolved into the data processing-driven variant of ITE. From 1983 till 1986 ITE evolved further into a stronger business-driven variant of ITE, which was intended to address a rapidly changing business environment. The then technical director, Charles M. Richter, from 1983 to 1987, guided by Clive Finkelstein, played a significant role by revamping the ITE methodology as well as helping to design the ITE software product which helped automate the ITE methodology, opening the way to next generation Information Architecture.
The Martin thread was database design-driven from the outset and from 1983 was focused on the possibility of automating the development process through the provision of techniques for business description that could be used to populate a data dictionary or encyclopedia that could in turn be used as source material for code generation. The Martin methodology provided a foundation for the CASE tool industry. Martin himself had significant stakes in at least four CASE tool vendors - InTech, Higher Order Software, KnowledgeWare, originally Database Design Inc, Information Engineering Workbench and James Martin Associates, originally DMW and now Headstrong.
At the end of the 1980s and early 1990s the Martin thread incorporated rapid application development and business process reengineering and soon after also entered the object oriented field. Over this same period the Finkelstein thread evolved further into Enterprise Architecture and his business-driven ITE methods evolved into Enterprise Engineering for the rapid delivery of EA. This is described in his books: "Enterprise Architecture for Integration: Rapid Delivery Methods and Technologies". first edition by Clive Finkelstein in hardcover. The second edition is in PDF and as an iBook on the Apple iPad and ebook on the Amazon Kindle.
As businesses began to progress along in society, so did the need for information engineering practices to be implemented in a widespread manner to increase productivity, efficiency, and profits among businesses. Everything a business does can almost always be assisted by technology in some manner. This is where the methodology of information engineering becomes important. Businesses will always have problems to solve and the development of technology assisted by the information engineering methodology has become one of the best things to happen in the business world. Problems that manually had to be done by hand can now be done by computer, such as payroll and benefits for a company. Using information engineering to solve problems can save time, money, and reduce the possibility of human error.

The phases of information engineering

ITE variants

There are two variants of information technology engineering. These are called the DP-driven variant and the business-driven variant.
Business-driven ITE is documented in the later books by Clive Finkelstein.
DP-driven Variant of ITE
Business-driven Variant of ITE for Rapid Delivery
Some techniques that are used during an ITE project are:
An important aspect in the development of information engineering, using computers to assist with the design process enabled the ability to tackle larger and more complex problems. This development came along due to the lack of brain power possessed by humans to solve these complex problems that required too much information to be retained by the human brain. Some examples of this are definitions, layouts, character representations, report requirements, and identifiers. These are all examples of information that are better stored on computers than in the human brain. Along with the information, visual aspects to represent these pieces of information were required as well, further increasing the need for a technology-based solution to this problem.
In the 1980s, computers began to become much more widely used in the business worlds. This phenomenon led to the need of information in a faster and more efficient manner. This evolution of information engineering allowed for decisions to be made faster, data to be discovered faster, reports to be made faster, and for transaction response to be faster. Although speed was a primary factor in the way these companies did things, the information still had to be precise. This created a 'race' between companies, to see which had the best data in the fastest time using the least amount of resources.
This growth led to the idea of automation. Automation allowed for these processes to be quickly done without much of any human input. This increased speed, lowered inaccuracy, and increased efficiency. The information engineering approach has been growing rapidly in the past years as it has been proven to be one of the best development methodologies.

Information engineering as a field of study & career

With the massive development of technology in recent years, information engineering has become increasingly popular. The concepts behind information engineering are taught as early as elementary school and as late as masters and PhD programs within the field of information engineering. This popularity increase has led to a widespread boom in the number of people who are qualified to work in fields that are heavily information engineering based. Information engineering has become a career path of its own, and quite a lucrative one as well. Information engineers earn an average salary of $106,000 according to Glassdoor. Many top colleges and universities offer information engineering programs as well.

Software tools

There are several tools supporting information technology engineering
Other tools include Bachman's Data Analyst, Excelerator, and more. See computer-aided software engineering.