Inferential theory of learning


Overview
Inferential Theory of Learning is an area of machine learning which describes inferential processes performed by learning agents. ITL has been continuously developed by Ryszard S. Michalski, starting in the 1980s. The first known publication of ITL was in 1983. In ITL learning process is viewed as a search through hypotheses space guided by a specific goal. Results of learning need to be stored. Stored information will later be used by the learner for future inferences. Inferences are split into multiple categories including In order for an inference to be considered complete it was required that all categories must be taken into account. This is how the ITL varies from other machine learning theories like Computational Learning Theory and Statistical Learning Theory; which both use singular forms of inference.

Usage

The most relevant published usage of ITL was in scientific journal published in 2012 and used ITL as a way to describe how agent-based learning works. According to the journal "The Inferential Theory of Learning provides an elegant way of describing learning processes by agents".