Inertia
Inertia is the resistance of any physical object to any change in its velocity. This includes changes to the object's speed, or direction of motion.
An aspect of this property is the tendency of objects to keep moving in a straight line at a constant speed, when no forces act upon them.
Inertia comes from the Latin word, iners, meaning idle, sluggish. Inertia is one of the primary manifestations of mass, which is a quantitative property of physical systems. Isaac Newton defined inertia as his first law in his Philosophiæ Naturalis Principia Mathematica, which states:
In common usage, the term "inertia" may refer to an object's "amount of resistance to change in velocity" or for simpler terms, "resistance to a change in motion", or sometimes to its momentum, depending on the context. The term "inertia" is more properly understood as shorthand for "the principle of inertia" as described by Newton in his first law of motion: an object not subject to any net external force moves at a constant velocity. Thus, an object will continue moving at its current velocity until some force causes its speed or direction to change.
On the surface of the Earth, inertia is often masked by gravity and the effects of friction and air resistance, both of which tend to decrease the speed of moving objects. This misled the philosopher Aristotle to believe that objects would move only as long as force was applied to them.
The principle of inertia is one of the fundamental principles in classical physics that are still used today to describe the motion of objects and how they are affected by the applied forces on them.
History and development of the concept
Early understanding of motion
Prior to the Renaissance, the most generally accepted theory of motion in Western philosophy was based on Aristotle who around about 335 BC to 322 BC said that, in the absence of an external motive power, all objects would come to rest and that moving objects only continue to move so long as there is a power inducing them to do so. Aristotle explained the continued motion of projectiles, which are separated from their projector, by the action of the surrounding medium, which continues to move the projectile in some way. Aristotle concluded that such violent motion in a void was impossible.Despite its general acceptance, Aristotle's concept of motion was disputed on several occasions by notable philosophers over nearly two millennia. For example, Lucretius stated that the "default state" of matter was motion, not stasis. In the 6th century, John Philoponus criticized the inconsistency between Aristotle's discussion of projectiles, where the medium keeps projectiles going, and his discussion of the void, where the medium would hinder a body's motion. Philoponus proposed that motion was not maintained by the action of a surrounding medium, but by some property imparted to the object when it was set in motion. Although this was not the modern concept of inertia, for there was still the need for a power to keep a body in motion, it proved a fundamental step in that direction. This view was strongly opposed by Averroes and by many scholastic philosophers who supported Aristotle. However, this view did not go unchallenged in the Islamic world, where Philoponus did have several supporters who further developed his ideas.
In the 11th century, Persian polymath Ibn Sina claimed that a projectile in a vacuum would not stop unless acted upon.
Theory of impetus
In the 14th century, Jean Buridan rejected the notion that a motion-generating property, which he named impetus, dissipated spontaneously. Buridan's position was that a moving object would be arrested by the resistance of the air and the weight of the body which would oppose its impetus. Buridan also maintained that impetus increased with speed; thus, his initial idea of impetus was similar in many ways to the modern concept of momentum. Despite the obvious similarities to more modern ideas of inertia, Buridan saw his theory as only a modification to Aristotle's basic philosophy, maintaining many other peripatetic views, including the belief that there was still a fundamental difference between an object in motion and an object at rest. Buridan also believed that impetus could be not only linear, but also circular in nature, causing objects to move in a circle.Buridan's thought was followed up by his pupil Albert of Saxony and the Oxford Calculators, who performed various experiments that further undermined the classical, Aristotelian view. Their work in turn was elaborated by Nicole Oresme who pioneered the practice of demonstrating laws of motion in the form of graphs.
Shortly before Galileo's theory of inertia, Giambattista Benedetti modified the growing theory of impetus to involve linear motion alone:
Benedetti cites the motion of a rock in a sling as an example of the inherent linear motion of objects, forced into circular motion.
Classical inertia
According to historian of science Charles Coulston Gillispie, inertia "entered science as a physical consequence of Descartes' geometrization of space-matter, combined with the immutability of God."The principle of inertia, which originated with Aristotle for "motions in a void", states that an object tends to resist a change in motion. According to Newton, an object will stay at rest or stay in motion unless acted on by a net external force, whether it results from gravity, friction, contact, or some other force. The Aristotelian division of motion into mundane and celestial became increasingly problematic in the face of the conclusions of Nicolaus Copernicus in the 16th century, who argued that the Earth is never at rest, but is actually in constant motion around the Sun. Galileo, in his further development of the Copernican model, recognized these problems with the then-accepted nature of motion and, at least partially as a result, included a restatement of Aristotle's description of motion in a void as a basic physical principle:
A body moving on a level surface will continue in the same direction at a constant speed unless disturbed.
Galileo writes that "all external impediments removed, a heavy body on a spherical surface concentric with the earth will maintain itself in that state in which it has been; if placed in movement towards the west, it will maintain itself in that movement." This notion which is termed "circular inertia" or "horizontal circular inertia" by historians of science, is a precursor to, but distinct from, Newton's notion of rectilinear inertia. For Galileo, a motion is "horizontal" if it does not carry the moving body towards or away from the centre of the earth, and for him, "a ship, for instance, having once received some impetus through the tranquil sea, would move continually around our globe without ever stopping."
It is also worth noting that Galileo later concluded that based on this initial premise of inertia, it is impossible to tell the difference between a moving object and a stationary one without some outside reference to compare it against. This observation ultimately came to be the basis for Albert Einstein to develop the theory of special relativity.
The first physicist to completely break away from the Aristotelian model of motion was Isaac Beeckman in 1614.
Concepts of inertia in Galileo's writings would later come to be refined, modified and codified by Isaac Newton as the first of his Laws of Motion :
Every body perseveres in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed thereon.
Since initial publication, Newton's Laws of Motion have come to form the basis for the branch of physics known as classical mechanics.
The term "inertia" was first introduced by Johannes Kepler in his Epitome Astronomiae Copernicanae ; however, the meaning of Kepler's term was not quite the same as its modern interpretation. Kepler defined inertia only in terms of a resistance to movement, once again based on the presumption that rest was a natural state which did not need explanation. It was not until the later work of Galileo and Newton unified rest and motion in one principle that the term "inertia" could be applied to these concepts as it is today.
Nevertheless, despite defining the concept so elegantly in his laws of motion, even Newton did not actually use the term "inertia" to refer to his First Law. In fact, Newton originally viewed the phenomenon he described in his First Law of Motion as being caused by "innate forces" inherent in matter, which resisted any acceleration. Given this perspective, and borrowing from Kepler, Newton attributed the term "inertia" to mean "the innate force possessed by an object which resists changes in motion"; thus, Newton defined "inertia" to mean the cause of the phenomenon, rather than the phenomenon itself. However, Newton's original ideas of "innate resistive force" were ultimately problematic for a variety of reasons, and thus most physicists no longer think in these terms. As no alternate mechanism has been readily accepted, and it is now generally accepted that there may not be one which we can know, the term "inertia" has come to mean simply the phenomenon itself, rather than any inherent mechanism. Thus, ultimately, "inertia" in modern classical physics has come to be a name for the same phenomenon described by Newton's First Law of Motion, and the two concepts are now considered to be equivalent.