Homo floresiensis


Homo floresiensis is a small species of archaic human which inhabited the island of Flores, Indonesia until the arrival of modern humans about 50,000 years ago.
The remains of an individual who would have stood about in height were discovered in 2003 at Liang Bua on the island of Flores in Indonesia. Partial skeletons of nine individuals have been recovered, including one complete skull, referred to as "LB1". These remains have been the subject of intense research to determine whether they represent a species distinct from modern humans; the dominant consensus is that these remains do represent a distinct species due to genetic and anatomical differences.
This hominin was at first considered remarkable for its survival until relatively recent times, initially thought to be only 12,000 years ago. However, more extensive stratigraphic and chronological work has pushed the dating of the most recent evidence of its existence back to 50,000 years ago. The Homo floresiensis skeletal material is now dated from 60,000 to 100,000 years ago; stone tools recovered alongside the skeletal remains were from archaeological horizons ranging from 50,000 to 190,000 years ago.

Specimens

Discovery

The first specimens were discovered on the Indonesian island of Flores in 2003 by a joint Australian-Indonesian team of archaeologists looking for evidence of the original human migration of modern humans from Asia to Australia. They instead recovered a nearly complete, small-statured skeleton, LB1, in Liang Bua Cave, and subsequent excavations recovered seven additional skeletons, initially dated from 38,000 to 13,000 years ago.
LB1 is a fairly complete skeleton, including a nearly complete skull, which belonged to a 30-year-old female, and has been nicknamed "Little Lady of Flores" or "Flo". An arm bone provisionally assigned to H. floresiensis is about 74,000 years old. The specimens are not fossilized and have been described as having "...the consistency of wet blotting paper." Once exposed, the bones had to be left to dry before they could be dug up.
Stone implements of a size considered appropriate to these small humans are also widely present in the cave. The implements are at horizons initially dated to 95,000 to 13,000 years ago. Modern humans reached the region by around 50,000 years ago, by which time H. floresiensis is thought to have gone extinct. Comparisons of the stone artefacts with those made by modern humans in East Timor indicate many technological similarities.

Scandal over specimen damage

In early December 2004, Indonesian paleoanthropologist Teuku Jacob removed most of the remains from their repository, Jakarta's National Research Centre of Archaeology, with the permission of only one of the project team's directors and kept them for three months. Some scientists expressed the fear that important scientific evidence would be sequestered by a small group of scientists who neither allowed access by other scientists nor published their own research. Jacob returned the remains on 23 February 2005 with portions severely damaged and missing two leg bones to the worldwide consternation of his peers.
Reports noted the condition of the returned remains, "... long, deep cuts marking the lower edge of the Hobbit's jaw on both sides, said to be caused by a knife used to cut away the rubber mould... the chin of a second Hobbit jaw was snapped off and glued back together. Whoever was responsible misaligned the pieces and put them at an incorrect angle... The pelvis was smashed, destroying details that reveal body shape, gait and evolutionary history." and causing the discovery team leader Morwood to remark, "It's sickening; Jacob was greedy and acted totally irresponsibly."
Jacob, however, denied any wrongdoing. He stated that the damages occurred during transport from Yogyakarta back to Jakarta despite the physical evidence to the contrary that the jawbone had been broken while making a mould of the bones.
In 2005, Indonesian officials forbade access to the cave. Some news media, such as the BBC, expressed the opinion that the restriction was to protect Jacob, who was considered "Indonesia's king of palaeoanthropology," from being proven wrong. Scientists were allowed to return to the cave in 2007, shortly after Jacob's death.

Classification

Phylogeny

The discoverers proposed that a variety of features, both primitive and derived, identify these individuals as belonging to a new species, H. floresiensis. Based on previous date estimates, the discoverers also proposed that H. floresiensis lived contemporaneously with modern humans on Flores. Before publication, the discoverers were considering placing LB1 into her own genus, Sundanthropus floresianus, but reviewers of the article recommended that, despite her size, she should be placed in the genus Homo.
Two orthopedic studies published in 2007 reported that the wrist bones were more similar to those of chimps and Australopithecus than to modern humans. However, another 2007 study of the bones and joints of the arm, shoulder, and lower limbs also concluded that H. floresiensis was more similar to early humans and other apes than modern humans.
A 2009 cladistic analysis concluded H. floresiensis branched off very early from the modern human line, either shortly before or shortly after the evolution of H. habilis 1.96–1.66 million years ago. In 2009, American anthropologist William Jungers and colleagues found that the foot of H. floresiensis has several primitive characters, and that they could be the descendants of a species much earlier than H. erectus. A 2015 Bayesian analysis found greatest similarity with Australopithecus sediba, Homo habilis and the primitive H. erectus georgicus, raising the possibility that the ancestors of H. floresiensis left Africa before the appearance of H. erectus, and were possibly even the first hominins to do so. However, H. floresiensis has several dental similarities to H. erectus, which could mean H. erectus was the ancestor species.
Their ancestors may have reached the island by one million years ago. In 2016, fossil teeth and a partial jaw from hominins assumed to be ancestral to H. floresiensis were discovered at Mata Menge, about from Liang Bua. They date to about 700,000 years ago and are noted by Australian archaeologist Gerrit van den Bergh for being even smaller than the later fossils. Based on these, he suggested that H. floresiensis derived from a population of H. erectus and rapidly shrank. A phylogenetic analysis published in 2017 suggests that H. floresiensis was descended from the same ancestor as H. habilis, making it a sister taxon to H. habilis. On the basis of this classification, H. floresiensis is hypothesized to represent a hitherto unknown and very early migration out of Africa. A similar conclusion was suggested in a 2018 study dating stone artefacts found at Shangchen, central China, to 2.1 million years ago.
Evolutionary tree according to a 2019 study:

DNA extraction attempt

In 2006, two teams attempted to extract DNA from a tooth discovered in 2003, but both teams were unsuccessful. It has been suggested that this happened because the dentine was targeted; new research suggests that the cementum has higher concentrations of DNA. Moreover, the heat generated by the high speed of the drill bit may have denatured the DNA.

Congenital disorder hypotheses

The small brain size of H. floresiensis at 417 cc has prompted hypotheses that the specimens were simply H. sapiens with a birth defect, rather than the result of neurological reorganisation.
;Microcephaly
human
Prior to Jacob's removal of the fossils, American neuroanthropologist Dean Falk and her colleagues performed a CT scan of the LB1 skull and a virtual endocast, and concluded that the brainpan was neither that of a pygmy nor an individual with a malformed skull and brain. In response, American neurologist Jochen Weber and colleagues compared the computer model skull with microcephalic human skulls, and found that the skull size of LB1 falls in the middle of the size range of the human samples, and is not inconsistent with microcephaly. In 2006, American biologist Robert Martin and colleagues also concluded that the skull was probably microcephalic, arguing that the brain is far too small to be a separate dwarf species; he said that, if it were, the 400-cubic-centimeter brain would indicate a creature only one foot in height, one-third the size of the discovered skeleton.
A 2006 study stated that LB1 probably descended from a pygmy population of modern humans, but herself shows signs of microcephaly, and other specimens from the cave show small stature but not microcephaly.
In 2005, the original discoverers of H. floresiensis, after unearthing more specimens, countered that the skeptics had mistakenly attributed the height of H. floresiensis to microcephaly. Falk stated that Martin's assertions were unsubstantiated. In 2006, Australian palaeoanthropologist Debbie Argue and colleagues also concluded that the finds are indeed a new species. In 2007, Falk found that H. floresiensis brains were similar in shape to modern humans, and the frontal and temporal lobes were well-developed, which would not have been the case were they microcephalic.
In 2008, Greek palaeontologist George Lyras and colleagues said that LB1 falls outside the range of variation for human microcephalic skulls. However, a 2013 comparison of the LB1 endocast to a set of 100 normocephalic and 17 microcephalic endocasts showed that there is a wide variation in microcephalic brain shape ratios and that in these ratios the group as such is not clearly distinct from normocephalics. The LB1 brain shape nevertheless aligns slightly better with the microcephalic sample, with the shape at the extreme edge of the normocephalic group. A 2016 pathological analysis of LB1's skull revealed no pathologies nor evidence of microcephaly, and concluded that LB1 is a separate species.
;Laron syndrome
A 2007 study postulated that the skeletons were those of humans who suffered from Laron syndrome, which was first reported in 1966, and is most common in inbreeding populations, which may have been the scenario on the small island. It causes a short stature and small skull, and many conditions seen in Laron syndrome patients are also exhibited in H. floresiensis. The estimated height of LB1 is at the lower end of the average for afflicted human women, but the endocranial volume is much smaller than anything exhibited in Laron syndrome patients. DNA analysis would be required to support this theory.
;Endemic cretinism
and Debbie Argue examining the type specimen
In 2008 Australian researcher Peter Obendorf—who studies endemic cretinism—and colleagues suggested that LB1 and LB6 suffered from myxoedematous endemic cretinism resulting from congenital hypothyroidism, and that they were part of an affected population of H. sapiens on the island. Cretinism, caused by iodine deficiency, is expressed by small bodies and reduced brain size, and is a form of dwarfism still found in the local Indonesian population. They said that various features of H. floresiensis are diagnostic characteristics, such as enlarged pituitary fossa, unusually straight and untwisted humeral heads, relatively thick limbs, double rooted premolar, and primitive wrist morphology.
However, Falk's scans of LB1's pituitary fossa show that it is not larger than usual. Also, in 2009, anthropologists Colin Groves and Catharine FitzGerald compared the Flores bones with those of ten people who had had cretinism, and found no overlap. Obendorf and colleagues rejected Groves and FitzGerald's argument the following year. A 2012 study similar to Groves and FitzGeralds' also found no evidence of cretinism.
;Down syndrome
In 2014, physical anthropologist Maciej Henneberg and colleagues claimed that LB1 suffered from Down syndrome, and that the remains of other individuals at the Flores site were merely normal modern humans. However, there a number of characteristics shared by both LB1 and LB6 as well as other known early humans and absent in H. sapiens, such as the lack of a chin. In 2016, a comparative study concluded that LB1 did not exhibit a sufficient number of Down syndrome characteristics to support a diagnoses.

Anatomy

The most important and obvious identifying features of H. floresiensis are its small body and small cranial capacity. Brown and Morwood also identified a number of additional, less obvious features that might distinguish LB1 from modern H. sapiens, including the form of the teeth, the absence of a chin, and the lesser angle in the head of the humerus. Each of these putative distinguishing features has been heavily scrutinized by the scientific community, with different research groups reaching differing conclusions as to whether these features support the original designation of a new species, or whether they identify LB1 as a severely pathological H. sapiens.
A 2015 study of the dental morphology of 40 teeth of H. floresiensis compared to 450 teeth of living and extinct human species, states that they had "primitive canine-premolar and advanced molar morphologies," which is unique among hominins.
The discovery of additional partial skeletons has verified the existence of some features found in LB1, such as the lack of a chin, but Jacob and other research teams argue that these features do not distinguish LB1 from local modern humans. Lyras et al. have asserted, based on 3D-morphometrics, that the skull of LB1 differs significantly from all H. sapiens skulls, including those of small-bodied individuals and microcephalics, and is more similar to the skull of Homo erectus. Ian Tattersall argues that the species is wrongly classified as Homo floresiensis as it is far too archaic to assign to the genus Homo.

Size

LB1's height is estimated to have been. The height of a second skeleton, LB8, has been estimated at based on tibial length. These estimates are outside the range of normal modern human height and considerably shorter than the average adult height of even the smallest modern humans, such as the Mbenga and Mbuti at, Twa, Semang at for adult women of the Malay Peninsula, or the Andamanese at also for adult women. LB1's body mass is estimated to have been. LB1 and LB8 are also somewhat smaller than the australopithecines from three million years ago, not previously thought to have expanded beyond Africa. Thus, LB1 and LB8 may be the shortest and smallest members of the extended human family discovered thus far.
Their short stature was likely due to insular dwarfism, where size decreases as a response to fewer resources in an island ecosystem. In 2006, Indonesian palaeoanthropologist Teuku Jacob and colleagues said that LB1 has a similar stature to the Rampasasa pygmies who inhabit the island, and that size can vary substantially in pygmy populations. Of course, the Rampasasa pygmies are completely unrelated to H. floresiensis.
Aside from smaller body size, the specimens seem to otherwise resemble H. erectus, a species known to have been living in Southeast Asia at times coincident with earlier finds purported to be of H. floresiensis.

Brain

In addition to a small body size, H. floresiensis had a remarkably small brain size. LB1's brain is estimated to have had a volume of, placing it at the range of chimpanzees or the extinct australopithecines. LB1's brain size is half that of its presumed immediate ancestor, H. erectus. The brain-to-body mass ratio of LB1 lies between that of H. erectus and the great apes. Such a reduction is likely due to insular dwarfism, and a 2009 study found that the reduction in brain size of extinct pygmy hippopotamuses in Madagascar compared with their living relatives is proportionally greater than the reduction in body size, and similar to the reduction in brain size of H. floresiensis compared with H. erectus.
Smaller size does not appear to have affected mental faculties, as Brodmann area 10 on the prefrontal cortex, which is associated with cognition, is about the same size as that of modern humans. H. floresiensis is also associated with evidence for advanced behaviours, such as the use of fire, butchering, and stone tool manufacturing.

Limbs

The angle of humeral torsion is much less than in modern humans. The humeral head of modern humans is twisted between 145 and 165 degrees to the plane of the elbow joint, whereas it is 120 degrees in H. floresiensis. This may have provided an advantage when arm-swinging, and, in tandem with the unusual morphology of the shoulder girdle and short clavicle, would have displaced the shoulders slightly forward into an almost shrugging position. The shrugging position would have compensated for the lower range of motion in the arm, allowing for similar manoeuverability in the elbows as modern humans. The wrist bones are similar to those of apes and Australopithecus, significantly different from those of modern humans, lacking features which evolved at least 800,000 years ago.
The leg bones are thicker than those of modern humans. The feet were unusually flat and long in relation with the rest of the body. As a result, when walking, they would have had to have bent the knees further back than modern humans do. This caused a high-stepping gait and low walking speed. The toes had an unusual shape and the big toe was very short.

Culture

Because of a deep neighbouring strait, Flores remained isolated during the Wisconsin glaciation, despite the low sea levels that united Sundaland. Therefore, the ancestors of H. floresiensis could only have reached the isolated island by water transport, perhaps arriving in bamboo rafts around one million years ago. Liang Bua Cave shows evidence of the use of fire for cooking, and bones with cut marks.
The cave also yielded a great quantity of stone artefacts, mainly lithic flakes. Points, perforators, blades, and microblades were associated with remains of the extinct elephant Stegodon, and were probably hafted into barbs to sink into the elephant. This indicates the inhabitants were targeting juvenile Stegodon. Similar artefacts are found at the Soa Basin south, associated with Stegodon and Komodo dragon remains, and are attributed to a likely ancestral population of H. erectus.

Extinction

The youngest bone remains in the cave date to 60,000 years ago, and the youngest stone tools to 50,000 years ago. The previous estimate of 12,000 BCE was due to an undetected unconformity in the cave stratigraphy. Their disappearance is close to the time that modern humans reached the area, suggesting that the initial encounter caused or contributed to their extinction. This would be consistent with the disappearance of H. neanderthalensis from Europe about 40,000 years ago, within 5,000 years after the arrival of modern humans there, and other anthropogenic extinctions.
Modern human bones recovered from the cave dating to 46,000 years ago indicate replacement of the former H. floresiensis inhabitants. Other megafauna of the island, such as Stegodon and the giant stork Leptoptilos robustus, also disappeared.

"Hobbit" nickname

H. floresiensis was swiftly nicknamed "the hobbit" by the discoverers, after the fictional race popularized in J. R. R. Tolkien's book The Hobbit, and some of the discoverers suggested naming the species H. hobbitus.
In October 2012, a New Zealand scientist due to give a public lecture on Homo floresiensis was told by the Tolkien Estate that he was not allowed to use the word "hobbit" in promoting the lecture.
In 2012, the American film studio The Asylum, which produces low-budget "mockbuster" films, planned to release a movie entitled Age of the Hobbits depicting a "peace-loving" community of H.floresiensis "enslaved by the Java Men, a race of flesh-eating dragon-riders." The film was intended to piggyback on the success of Peter Jackson's film . The film was blocked from release due to a legal dispute about using the word "hobbit." The Asylum argued that the film did not violate the Tolkien copyright because the film was about H.floresiensis, "uniformly referred to as 'Hobbits' in the scientific community." The film was later retitled Clash of the Empires.

Citation