Hadamard's maximal determinant problem
Hadamard's maximal determinant problem, named after Jacques Hadamard, asks for the largest determinant of a matrix with elements equal to 1 or −1. The analogous question for matrices with elements equal to 0 or 1 is equivalent since, as will be shown below, the maximal determinant of a matrix of size n is 2n−1 times the maximal determinant of a matrix of size n−1. The problem was posed by Hadamard in the 1893 paper in which he presented his famous determinant bound and remains unsolved for matrices of general size. Hadamard's bound implies that -matrices of size n have determinant at most nn/2. Hadamard observed that a construction of Sylvester
produces examples of matrices that attain the bound when n is a power of 2, and produced examples of his own of sizes 12 and 20. He also showed that the bound is only attainable when n is equal to 1, 2, or a multiple of 4. Additional examples were later constructed by Scarpis and Paley and subsequently by many other authors. Such matrices are now known as Hadamard matrices. They have received intensive study.
Matrix sizes n for which n ≡ 1, 2, or 3 have received less attention. The earliest results are due to Barba, who tightened Hadamard's bound for n odd, and Williamson, who found the largest determinants for n=3, 5, 6, and 7. Some important results include
- tighter bounds, due to Barba, Ehlich, and Wojtas, for n ≡ 1, 2, or 3 , which, however, are known not to be always attainable,
- a few infinite sequences of matrices attaining the bounds for n ≡ 1 or 2 ,
- a number of matrices attaining the bounds for specific n ≡ 1 or 2 ,
- a number of matrices not attaining the bounds for specific n ≡ 1 or 3 , but that have been proved by exhaustive computation to have maximal determinant.
Hadamard matrices
Any two rows of an n×n Hadamard matrix are orthogonal. For a matrix, it means any two rows differ in exactly half of the entries, which is impossible when n is an odd number. When n ≡ 2 , two rows that are both orthogonal to a third row cannot be orthogonal to each other. Together, these statements imply that an n×n Hadamard matrix can exist only if n = 1, 2, or a multiple of 4. Hadamard matrices have been well studied, but it is not known whether an n×n Hadamard matrix exists for every n that is a positive multiple of 4. The smallest n for which an n×n Hadamard matrix is not known to exist is 668.Equivalence and normalization of {1, −1} matrices
Any of the following operations, when performed on a matrix R, changes the determinant of R only by a minus sign:- Negation of a row.
- Negation of a column.
- Interchange of two rows.
- Interchange of two columns.
Connection of the maximal determinant problems for {1, −1} and {0, 1} matrices
There is a one-to-one map from the set of normalized n×n matrices to the set of × matrices under which the magnitude of the determinant is reduced by a factor of 21−n. This map consists of the following steps.- Subtract row 1 of the matrix from rows 2 through n.
- Extract the × submatrix consisting of rows 2 through n and columns 2 through n. This matrix has elements 0 and −2.
- Divide the submatrix by −2 to obtain a matrix.
In this example, the original matrix has determinant −16 and its image has determinant 2 = −16·−3.
Since the determinant of a matrix is an integer, the determinant of an n×n matrix is an integer multiple of 2n−1.
Upper bounds on the maximal determinant
Gram matrix
Let R be an n by n matrix. The Gram matrix of R is defined to be the matrix G = RRT. From this definition it follows that G- is an integer matrix,
- is symmetric,
- is positive-semidefinite,
- has constant diagonal whose value equals n.
Hadamard's bound (for all ''n'')
Hadamard's bound can be derived by noting that |det R| = 1/2 ≤ 1/2 = nn/2, which is a consequence of the observation that nI, where I is the n by n identity matrix, is the unique matrix of maximal determinant among matrices satisfying properties 1–4. That det R must be an integer multiple of 2n−1 can be used to provide another demonstration that Hadamard's bound is not always attainable. When n is odd, the bound nn/2 is either non-integer or odd, and is therefore unattainable except when n = 1. When n = 2k with k odd, the highest power of 2 dividing Hadamard's bound is 2k which is less than 2n−1 unless n = 2. Therefore, Hadamard's bound is unattainable unless n = 1, 2, or a multiple of 4.Barba's bound for ''n'' odd
When n is odd, property 1 for Gram matrices can be strengthened to- G is an odd-integer matrix.
The Ehlich–Wojtas bound for ''n'' ≡ 2 (mod 4)
When n is even, the set of rows of R can be partitioned into two subsets.- Rows of even type contain an even number of elements 1 and an even number of elements −1.
- Rows of odd type contain an odd number of elements 1 and an odd number of elements −1.
where A and D are symmetric integer matrices whose elements are congruent to 2 and B is a matrix whose elements are congruent to 0. In 1964, Ehlich and Wojtas independently showed that in the maximal determinant matrix of this form, A and D are both of size n/2 and equal to I+2J while B is the zero matrix. This optimal form is unique up to multiplication of any set of rows and the corresponding set of columns by −1 and to simultaneous application of a permutation to rows and columns. This implies the bound det R ≤ /2. Ehlich showed that if R attains the bound, and if the rows and columns of R are permuted so that both G = RRT and G′ = RTR have the standard form and are suitably normalized, then we may write
where W, X, Y, and Z are × matrices with constant row and column sums w, x, y, and z that satisfy z = −w, y = x, and w2+x2 = 2n−2. Hence the Ehlich–Wojtas bound is not attainable unless 2n−2 is expressible as the sum of two squares.
Ehlich's bound for ''n'' ≡ 3 (mod 4)
When n is odd, then by using the freedom to multiply rows by −1, one may impose the condition that each row of R contain an even number of elements 1 and an odd number of elements −1. It can be shown that, if this normalization is assumed, then property 1 of G may be strengthened to- G is a matrix with integer elements congruent to n.
n | s |
3 | 3 |
7 | 5 |
11 | 5 or 6 |
15 − 59 | 6 |
≥ 63 | 7 |
Except for n=11 where there are two possibilities, the optimal form is unique up to multiplication of any set of rows and the corresponding set of columns by −1 and to simultaneous application of a permutation to rows and columns. This optimal form leads to the bound
where v = n−rs is the number of blocks of size r+1 and u =s−v is the number of blocks of size r.
Cohn analyzed the bound and determined that, apart from n = 3, it is an integer only for n = 112t2±28t+7 for some positive integer t. Tamura derived additional restrictions on the attainability of the bound using the Hasse-Minkowski theorem on the rational equivalence of quadratic forms, and showed that the smallest n > 3 for which Ehlich's bound is conceivably attainable is 511.
Maximal determinants up to size 21
The maximal determinants of matrices up to size n = 21 are given in the following table. Size 22 is the smallest open case. In the table, D represents the maximal determinant divided by 2n−1. Equivalently, D represents the maximal determinant of a matrix of size n−1.n | D | Notes |
1 | 1 | Hadamard matrix |
2 | 1 | Hadamard matrix |
3 | 1 | Attains Ehlich bound |
4 | 2 | Hadamard matrix |
5 | 3 | Attains Barba bound; circulant matrix |
6 | 5 | Attains Ehlich–Wojtas bound |
7 | 9 | 98.20% of Ehlich bound |
8 | 32 | Hadamard matrix |
9 | 56 | 84.89% of Barba bound |
10 | 144 | Attains Ehlich–Wojtas bound |
11 | 320 | 94.49% of Ehlich bound; three non-equivalent matrices |
12 | 1458 | Hadamard matrix |
13 | 3645 | Attains Barba bound; maximal-determinant matrix is incidence matrix of projective plane of order 3 |
14 | 9477 | Attains Ehlich–Wojtas bound |
15 | 25515 | 97.07% of Ehlich bound |
16 | 131072 | Hadamard matrix; five non-equivalent matrices |
17 | 327680 | 87.04% of Barba bound; three non-equivalent matrices |
18 | 1114112 | Attains Ehlich–Wojtas bound; three non-equivalent matrices |
19 | 3411968 | Attains 97.50% of Ehlich bound; three non-equivalent matrices |
20 | 19531250 | Hadamard matrix; three non-equivalent matrices |
21 | 56640625 | 90.58% of Barba bound; seven non-equivalent matrices |