Griseofulvin is used orally only for dermatophytosis. It is ineffective topically. It is reserved for cases with nail, hair, or large body surface involvement. Terbinafine given for 2 to 4 weeks is at least as effective as griseofulvin given for 6 to 8 weeks for treatment of Trichophyton scalp infections. However, griseofulvin is more effective than terbinafine for treatment of Microsporum scalp infections.
Side effects
Known side effects of griseofulvin include:
Pharmacology
Pharmacodynamics
The drug binds to tubulin, interfering with microtubule function, thus inhibiting mitosis. It binds to keratin in keratin precursor cells and makes them resistant to fungal infections. The drug reaches its site of action only when hair or skin is replaced by the keratin-griseofulvin complex. Griseofulvin then enters the dermatophyte through energy-dependent transport processes and bind to fungal microtubules. This alters the processing for mitosis and also underlying information for deposition of fungal cell walls.
Biosynthetic process
It is produced industrially by fermenting the fungus Penicillium griseofulvum. The first step in the biosynthesis of griseofulvin by P. griseofulvin is the synthesis of the 14-carbon poly-β-keto chain by a type Iiterativepolyketide synthase via iterative addition of 6 malonyl-CoA to an acyl-CoA starter unit. The 14-carbon poly-β-keto chain undergoes cyclization/aromatization, using cyclase/aromatase, respectively, through a Claisen and aldol condensation to form the benzophenone intermediate. The benzophenone intermediate is then methylated via S-adenosyl methionine twice to yield griseophenone C. The griseophenone C is then halogenated at the activated site ortho to the phenol group on the left aromatic ring to form griseophenone B. The halogenated species then undergoes a single phenolic oxidation in both rings forming the two oxygen diradical species. The rightoxygen radical shifts alpha to the carbonyl via resonance allowing for a stereospecific radical coupling by the oxygen radical on the left ring forming a tetrahydrofuranone species. The newly formed grisan skeleton with a spiro center is then O-methylated by SAM to generate dehydrogriseofulvin. Ultimately, a stereoselective reduction of the olefin on dehydrogriseofulvin by NADPH affords griseofulvin.