For genotyping of microorganisms for medical diagnosis, or other purposes, scientists may use a wide variety of DNA profiling techniques, such as PCR, PFGE and MLST. A complication of this broad variety of pre-WGS techniques is the difficulty to standardize between techniques, laboratories and microorganisms, which may be overcome using the complete DNA code of the genome generated by WGS techniques. For straight forward diagnostic identification the WGS information of a microbiological sample is fed into a global genomic database and compared using BLAST procedures to the genomes already present in the database. In addition, WGS data may be used to back calculate to the different pre-WGS genotyping methods, so previous collected valuable information is not lost. For the global microbial identifier the genomic information is coupled to a wide spectrum of metadata about the specific microbial clone and includes important clinical and epidemiological information such as the global finding place, treatment options and antimicrobial resistance, making it a general microbiological identification tool.This makes personalized treatment of microbial disease possible as well as real-time tracing systems for global surveillance of infectious diseases for food safety and serving human health.
The initiative
The initiative for building the database arose in 2011 and when several preconditions were met : 1) WGS has become mature and serious alternative for other genotyping techniques, 2) the price of WGS has started falling dramatically and in some cases below the price of traditional identifications, 3) vast amounts of IT resources and a fast Internet have become available, and 4) there is the idea that via a cross sectoral and One Health approach infectious diseases may be better controlled. Starting the second millennium, many microbiological laboratories, as well as national health institutes, started genome sequencing projects for sequencing the infectious agents collections they had in their biobanks. Thereby generating private databases and sending model genomes to global nucleotide databases such as GenBank of the NCBI or the nucleotide database of the EMBL. This created a wealth of genomic information and independent databases for eukaryotic as well as prokaryotic genomes. The need to further integrate these databases and to harmonize data collection, and to link the genomic data to metadata for optimal prevention of infectious diseases, was generally recognized by the scientific community. In 2011, several infectious disease control centers and other organizations took the initiative of a series of international scientific- and policy-meetings, to develop a common platform and to better understand the potentials of an interactive microbiological genomic database. The first meeting was in Brussels, September 2011, followed by meetings in Washington and Copenhagen. In addition to experts from around the globe, Intergovernmental Organizations have been included in the action, notably the World Health Organization and the World Organization for Animal Health.
Development plan
A detailed roadmap for the development of the database was set up with the following general timeline: