Geometric programming


A geometric program is an optimization problem of the form
where are posynomials and are monomials. In the context of geometric programming, a monomial is a function from to defined as
where and. A posynomial is any sum of monomials.
Geometric programming is
closely related to convex optimization: any GP can be made convex by means of a change of variables. GPs have numerous applications, including component sizing in IC design, aircraft design, and maximum likelihood estimation for logistic regression in statistics.

Convex form

Geometric programs are not in general convex optimization problems, but they can be transformed to convex problems by a change of variables and a transformation of the objective and constraint functions. In particular, after performing the change of variables and taking the log of the objective and constraint functions, the functions, i.e., the posynomials, are transformed into log-sum-exp functions, which are convex, and the functions, i.e., the monomials, become affine. Hence, this transformation transforms every GP into an equivalent convex program. In fact, this log-log transformation can be used to convert a larger class of problems, known as log-log convex programming, into an equivalent convex form.

Software

Several software packages exist to assist with formulating and solving geometric programs.