The necessity for Faddeev–Popov ghosts follows from the requirement that quantum field theories yield unambiguous, non-singular solutions. This is not possible in the path integral formulation when a gauge symmetry is present since there is no procedure for selecting among physically equivalent solutions related by gauge transformation. The path integrals overcount field configurations corresponding to the same physical state; the measure of the path integrals contains a factor which does not allow obtaining various results directly from the action.
Faddeev–Popov procedure
It is possible, however, to modify the action, such that methods such as Feynman diagrams will be applicable by adding ghost fields which break the gauge symmetry. The ghost fields do not correspond to any real particles in external states: they appear as virtual particles in Feynman diagrams – or as the absence of gauge configurations. However, they are a necessary computational tool to preserve unitarity. The exact form or formulation of ghosts is dependent on the particular gauge chosen, although the same physical results must be obtained with all gauges since the gauge one chooses to carry out calculations is an arbitrary choice. The Feynman–'t Hooft gauge is usually the simplest gauge for this purpose, and is assumed for the rest of this article.
Every gauge field has an associated ghost, and where the gauge field acquires a mass via the Higgs mechanism, the associated ghost field acquires the same mass.
Appearance in Feynman diagrams
In Feynman diagrams the ghosts appear as closed loops wholly composed of 3-vertices, attached to the rest of the diagram via a gauge particle at each 3-vertex. Their contribution to the S-matrix is exactly cancelled by a contribution from a similar loop of gauge particles with only 3-vertex couplings or gauge attachments to the rest of the diagram. The opposite sign of the contribution of the ghost and gauge loops is due to them having opposite fermionic/bosonic natures.
Ghost field Lagrangian
The Lagrangian for the ghost fields in Yang–Mills theories is given by The first term is a kinetic term like for regular complex scalar fields, and the second term describes the interaction with the gauge fields as well as the Higgs field. Note that in abeliangauge theories the ghosts do not have any effect since and, consequently, the ghost particles do not interact with the gauge fields.