Exponential sheaf sequence


In mathematics, the exponential sheaf sequence is a fundamental short exact sequence of sheaves used in complex geometry.
Let M be a complex manifold, and write OM for the sheaf of holomorphic functions on M. Let OM* be the subsheaf consisting of the non-vanishing holomorphic functions. These are both sheaves of abelian groups. The exponential function gives a sheaf homomorphism
because for a holomorphic function f, exp is a non-vanishing holomorphic function, and exp = expexp. Its kernel is the sheaf 2πiZ of locally constant functions on M taking the valuesin, with n an integer. The exponential sheaf sequence is therefore
The exponential mapping here is not always a surjective map on sections; this can be seen for example when M is a punctured disk in the complex plane. The exponential map is surjective on the stalks: Given a germ g of an holomorphic function at a point P such that g ≠ 0, one can take the logarithm of g in a neighborhood of P. The long exact sequence of sheaf cohomology shows that we have an exact sequence
for any open set U of M. Here H0 means simply the sections over U, and the sheaf cohomology H1 is the singular cohomology of U.
One can think of H1 as associating an integer to each loop in U. For each section of OM*, the connecting homomorphism to H1 gives the winding number for each loop. So this homomorphism is therefore a generalized winding number and measures the failure of U to be contractible. In other words, there is a potential topological obstruction to taking a global logarithm of a non-vanishing holomorphic function, something that is always locally possible.
A further consequence of the sequence is the exactness of
Here H1 can be identified with the Picard group of holomorphic line bundles on M. The connecting homomorphism sends a line bundle to its first Chern class.