Enterococcus faecalis


Enterococcus faecalis – formerly classified as part of the group D Streptococcus system – is a Gram-positive, commensal bacterium inhabiting the gastrointestinal tracts of humans and other mammals. Like other species in the genus Enterococcus, E. faecalis is found in healthy humans, but can cause life-threatening infections, especially in the nosocomial environment, where the naturally high levels of antibiotic resistance found in E. faecalis contribute to its pathogenicity.
E. faecalis has been frequently found in reinfected, root canal-treated teeth in prevalence values ranging from 30% to 90% of the cases. Re-infected root canal-treated teeth are about nine times more likely to harbor E. faecalis than cases of primary infections.

Physiology

E. faecalis is a nonmotile microbe; it ferments glucose without gas production, and does not produce a catalase reaction with hydrogen peroxide. It produces a reduction of litmus milk, but does not liquefy gelatin. It shows consistent growth throughout nutrient broth which is consistent with being a facultative anaerobe. It catabolizes a variety of energy sources, including glycerol, lactate, malate, citrate, arginine, agmatine, and many keto acids. Enterococci survive very harsh environments, including extremely alkaline pH and salt concentrations. They resist bile salts, detergents, heavy metals, ethanol, azide, and desiccation. They can grow in the range of 10 to 45 °C and survive at temperatures of 60 °C for 30 min.

Pathogenesis

E. faecalis is found in most healthy individuals, but can cause endocarditis and sepsis, urinary tract infections, meningitis, and other infections in humans. Several virulence factors are thought to contribute to E. faecalis infections. A plasmid-encoded hemolysin, called the cytolysin, is important for pathogenesis in animal models of infection, and the cytolysin in combination with high-level gentamicin resistance is associated with a five-fold increase in risk of death in human bacteremia patients. A plasmid-encoded adhesin called "aggregation substance" is also important for virulence in animal models of infection.

Antibacterial resistance

Multi drug resistance

E. faecalis is resistant to many commonly used antimicrobial agents.
Resistance to vancomycin in E. faecalis is becoming more common. Treatment options for vancomycin-resistant E. faecalis include nitrofurantoin, linezolid, and daptomycin, although ampicillin is preferred if the bacteria are susceptible. Quinupristin/dalfopristin can be used to treat Enterococcus faecium but not E. faecalis.
In root-canal treatments, NaOCl and chlorhexidine are used to fight E. faecalis before isolating the canal. However, recent studies determined that NaOCl or CHX showed low ability to eliminate E. faecalis.

Development of antibiotic resistance

Combined drug therapies

According to one study combined drug therapy has shown some efficacy in cases of severe infections against susceptible strains of E. faecalis. Ampicillin- and vancomycin-sensitive E. faecalis strains can be treated by gentamicin and ampicillin antibiotics. A less nephrotoxic combination of ampicillin and ceftriaxone may be used alternatively for ampicillin-susceptible E. faecalis.
Daptomycin or linezolid may also show efficacy in case ampicillin and vancomycin resistance.
A combination of penicillin and streptomycin therapy was used in the past.

Survival and virulence factors

Prior to 1984, enterococci were members of the genus Streptococcus; thus, E. faecalis was known as Streptococcus faecalis.
In 2013, a combination of cold denaturation and NMR spectroscopy was used to show detailed insights into the unfolding of the E. faecalis homodimeric repressor protein CylR2.

Genome structure

The E. faecalis genome consists of 3.22 million base pairs with 3,113 protein-coding genes.

Small RNA

s play important roles in many cellular processes; 11 small RNAs have been experimentally characterised in E. faecalis V583 and detected in various growth phases. Five of them have been shown to be involved in stress response and virulence.
A genome-wide sRNA study suggested that some sRNAs are linked to the antibiotic resistance and stress response in another Enteroccocus: E. faecium.