Ecological light pollution


Ecological light pollution is the effect of artificial light on individual organisms and on the structure of ecosystems as a whole.
The effect that artificial light has upon organisms is highly variable, and ranges from beneficial to immediately fatal. It is also possible for light at night to be both beneficial and damaging for a species. As an example, humans benefit from using indoor artificial light to extend the time available for work and play, but the light disrupts the human circadian rhythm, and the resulting stress is damaging to health.
Through the various effects that light pollution has on individual species, the ecology of regions is affected. In the case where two species occupy an identical niche, the population frequency of each species may be changed by the introduction of artificial light if they are not equally affected by light at night. For example, some species of spiders avoid lit areas, while other species are happy to build their spider web directly on a lamp post. Since lamp posts attract many flying insects, the spiders that don't mind light gain an advantage over the spiders that avoid it, and consequently become more common. Changes in these species frequencies can then have knock-on effects, as the interactions between these species and others in the ecosystem are affected and food webs are altered. These ripple effects can eventually affect even diurnal plants and animals. As an example, changes in the activity of night active insects can change the survival rates of night blooming plants, which may provide food or shelter for diurnal animals.
The introduction of artificial light at night is one of the most drastic anthropogenic changes to the Earth, comparable to toxic pollution, land use change, and climate change due to increases in the concentration of green house gases.
s that are stealing the nocturnal insects caught in spiderwebs near street lamps demonstrate.

Natural light cycles

The introduction of artificial light disrupts several natural light cycles that arise from the movements of the Earth, Moon, and Sun, as well as from meteorological factors.

Diurnal (solar) cycle

The most obvious change in introducing light at night is the end of darkness in general. The day/night cycle is probably the most powerful environmental behavioral signal, as almost all animals can be categorized as nocturnal or diurnal. If a nocturnal animal is only active in extreme dark, it will be unable to live in lit areas. The most acute affects are directly next to streetlights and lit buildings, but the diffuse light of skyglow can extend out to hundreds of kilometers away from city centers.

Seasonal (solar) cycles

The axial tilt of the Earth results in seasons outside of the tropics. The change in the length of the day is the key signal for seasonal behavior in non-tropical animals. The presence of light at night can result in "seasons out of time" , changing the behavior and thermoregulation of affected organisms. This effect can be deadly for small mammals in the winter, since when their body acts as if it's summer they don't maintain an adequate winter body temperature to survive winter nights.

Lunar cycles

The behavior of some animals is keyed to the lunar cycle. Near city centers the level of skyglow often exceeds that of the full moon, so the presence of light at night can alter these behaviors, potentially reducing fitness.

Cloud coverage

In pristine areas, clouds blot out the stars and darken the night sky, resulting in the darkest possible nights. In urban and suburban areas, in contrast, clouds enhance the effect of skyglow, particularly for longer wavelengths. This means that the typical level of light is much higher near cities, but it also means that truly dark nights never occur in these areas.

Effects of light pollution on individual organisms

Insects

The attraction of insects to artificial light is one of the most well known examples of the effect of light at night on organisms. When insects are attracted to lamps they can be killed by exhaustion or contact with the lamp itself, and they are also vulnerable to predators like bats.
Insects are affected differently by the varying wavelengths of light, and many species can see ultraviolet and infrared light that is invisible to humans. Because of variances in perception, moths are more attracted to broad spectrum white and bluish light sources than they are to the yellow light emitted by low pressure sodium-vapor lamps.
The compound eye of moths results in fatal attraction to light.
Dragonflies perceive horizontally polarized light as a sign of water. For this reason, sources of water are indistinguishable from asphalt roads with polarized light pollution to them. Dragonflies searching for water either to drink or in which to lay eggs often land on roads or other dark flat reflective surfaces such as cars and remain there until they die of dehydration and hyperthermia.
Light pollution may hamper the mating rituals of fireflies, once they depend on their own light for courtship, resulting in decreased populations.
Fireflies are charismatic and are easily spotted by nonexperts, providing thus good flagship species to attract public attention; good investigation models for the effects of light on nocturnal wildlife; and finally, due to their sensibility and rapid response to environmental changes, good bioindicators for artificial night lighting.

Birds

Lights on tall structures can disorient migrating birds. Estimates by the U.S. Fish and Wildlife Service of the number of birds killed after being attracted to tall towers range from 4 to 5 million per year to an order of magnitude higher. The Fatal Light Awareness Program works with building owners in Toronto, Canada and other cities to reduce mortality of birds by turning out lights during migration periods.
Similar disorientation has also been noted for bird species migrating close to offshore production and drilling facilities. Studies carried out by Nederlandse Aardolie Maatschappij b.v. and Shell have led to development and trial of new lighting technologies in the North Sea. In early 2007, the lights were installed on the Shell production platform L15. The experiment proved a great success since the number of birds circling the platform declined by 50-90%. Juvenile seabirds may also be disoriented by lights as they leave their nests and fly out to sea.
Ceilometers can be particularly deadly traps for birds , as they become caught in the beam and risk exhaustion and collisions with other birds. In the worst recorded ceilometer kill-off, on October 7–8, 1954, 50,000 birds from 53 different species were killed at Warner Robins Air Force Base.

Humans

At the turn of the century it was discovered that human eyes contain a non-imaging photosensor that is the primary regulator of the human circadian rhythm. This photosensor is particularly affected by blue light, and when it observes light the pineal gland stops the secretion of melatonin. The presence of light at night in human dwellings makes going to sleep more difficult and reduces the overall level of melatonin in the bloodstream, and exposure to a low-level incandescent bulb for 39 minutes is sufficient to suppress melatonin levels to 50%. Because melatonin is a powerful anti-oxidant, it is hypothesized that this reduction can result in an increased risk of breast and prostate cancer.
Other human health effects may include increased headache incidence, worker fatigue, medically defined stress, decrease in sexual function and increase in anxiety. Likewise, animal models have been studied demonstrating unavoidable light to produce adverse effect on mood and anxiety.

Turtles

Lights from seashore developments repel nesting Sea turtle mothers, and their hatchlings are fatally attracted to street and hotel lights rather than to the ocean.

Zooplankton

exhibit diel vertical migration. That is, they actively change their vertical position inside of lakes throughout the day. In lakes with fish, the primary driver for their migration is light level, because small fish visually prey on them. The introduction of light through skyglow reduces the height to which they can ascend during the night. Because zooplankton feed on the phytoplankton that form algae, the decrease in their predation upon phytoplankton may increase the chance of algal blooms, which can kill off the lakes' plants and lower water quality.

Effects of different wavelengths

The effect that artificial light has upon organisms is wavelength dependent. While human beings cannot see ultraviolet light, it is often used by entomologists to attract insects. Generally speaking, blue light is more likely to be damaging to mammals because the non-imaging photoreceptors in mammalian eyes are most sensitive in the blue region. This means that if traditional vapor discharge streetlamps are replaced by white LEDs, the ecological impact could be greater even if the total amount of radiated light is decreased.

Polarized light pollution

Artificial planar surfaces, such as glass windows or asphalt reflect highly polarized light. Many insects are attracted to polarized surfaces, because polarization is usually an indicator for water. This effect is called polarized light pollution, and although it is certainly a form of ecological photopollution, "ecological light pollution" usually refers to the impact of artificial light on organisms.
In the night, the polarization of the moonlit sky is very strongly reduced in the presence of urban light pollution, because scattered urban light is not strongly polarized. Since polarized moonlight is believed to be used by many animals for navigation, this screening is another negative effect of light pollution on ecology.