Eclipse season


An eclipse season is one of only two periods during each year when eclipses can occur, due to the variation in the orbital inclination of the Moon. Each season lasts about 35 days and repeats just short of six months later, thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. During the eclipse season, the inclination of the Moon's orbit is low, hence the Sun, Moon, and Earth become aligned straight enough for an eclipse to occur.
Eclipse seasons should occur 38 times within a saros period.
The type of each solar eclipse depends on the apparent sizes of the Sun and Moon, which are functions of the distances of Earth from the Sun and of the Moon from Earth, respectively, as seen from Earth's surface. These distances vary because both the Earth and the Moon have elliptic orbits.
If the Earth had a perfectly circular orbit centered around the Sun, and the Moon's orbit was also perfectly circular and centered around the Earth, and both orbits were coplanar with each other, then two eclipses would happen every lunar month. A lunar eclipse would occur at every full moon, a solar eclipse every new moon, and all solar eclipses would be the same type.

Details

An eclipse season is the only time when the Sun is close enough to one of the Moon's nodes to allow an eclipse to occur. During the season, whenever there is a full moon a lunar eclipse will occur and whenever there is a new moon a solar eclipse will occur. If the Sun is close enough to a node, then a total eclipse will occur. Each season lasts from 31 to 37 days, and seasons recur about every 6 months. At least two, and at most three eclipses, will occur during every eclipse season. This is because it is about 15 days between full moon and new moon and vice versa. If there is an eclipse at the very beginning of the season, then there is enough time for two more eclipses.
In other words, because the eclipse season is longer than the synodic month, the Moon will be new or full at least two, and up to three, times during the season. Eclipse seasons occur slightly shy of six months apart, the time it takes the Sun to travel from one node to the next along the ecliptic. If the last eclipse of an eclipse season occurs at the very beginning of a calendar year, it is possible for a total of seven eclipses to occur since there is still time before the end of the calendar year for two full eclipse seasons, each having up to three eclipses.

Examples: Part 1 out of 4

Visual sequence of two particular eclipse seasons

In each sequence below, each eclipse is separated by a fortnight. The first and last eclipse in each sequence is separated by one synodic month. See also Eclipse cycles.
June 5th
Descending node
June 21st
Ascending node
July 5th
Descending node
Penumbral lunar eclipse
Lunar saros 111
Annular solar eclipse
Solar saros 137
Penumbral lunar eclipse
Lunar saros 149

June 12th
Descending node
June 26th
Ascending node
July 11th
Descending node
Partial solar eclipse
Solar saros 118
Total lunar eclipse
Lunar saros 130
Partial solar eclipse
Solar saros 156

15-year chart of eclipses (2004–2018) demonstrating seasons

The partial lunar eclipse of August 7–8, 2017 was followed by the solar eclipse of August 21, 2017.

Examples: Part 2 out of 4

Visual sequence of two particular eclipse seasons

In each sequence below, each eclipse is separated by a fortnight. The first and last eclipse in each sequence is separated by one synodic month. See also Eclipse cycles.
July 7th
Ascending node
July 22nd
Descending node
August 6th
Ascending node
Penumbral lunar eclipse
Lunar saros 110
Total solar eclipse
Solar saros 136
Penumbral lunar eclipse
Lunar saros 148

July 13th
Ascending node
July 27th
Descending node
August 11th
Ascending node
Partial solar eclipse
Solar saros 117
Total lunar eclipse
Lunar saros 129
Partial solar eclipse
Solar saros 155

Examples: Part 3 out of 4

Visual sequence of two particular eclipse seasons

In each sequence below, each eclipse is separated by a fortnight. The first and last eclipse in each sequence is separated by one synodic month. See also Eclipse cycles.
July 6th
Descending node
July 20th
Ascending node
August 4th
Descending node
Penumbral lunar eclipse
Lunar saros 109
Annular solar eclipse
Solar saros 135
Penumbral lunar eclipse
Lunar saros 147

July 11th
Descending node
July 26th
Ascending node
August 9th
Descending node
Partial solar eclipse
Solar saros 116
Total lunar eclipse
Lunar saros 128
Partial solar eclipse
Solar saros 154

Examples: Part 4 out of 4

Visual sequence of two particular eclipse seasons

In each sequence below, each eclipse is separated by a fortnight. The first and last eclipse in each sequence is separated by one synodic month. See also Eclipse cycles.
July 21st
Ascending node
August 4th
Descending node
August 20th
Ascending node
Partial solar eclipse
Solar saros 115
Total lunar eclipse
Lunar saros 127
Partial solar eclipse
Solar saros 153

July 26th
Ascending node
August 10th
Descending node
August 24th
Ascending node
Penumbral lunar eclipse
Lunar saros 108
Annular solar eclipse
Solar saros 134
Penumbral lunar eclipse
Lunar saros 146