A domain of unknown function is a protein domain that has no characterised function. These families have been collected together in the Pfam database using the prefix DUF followed by a number, with examples being DUF2992 and DUF1220. As of 2019, there are almost 4,000 DUF families within the Pfam database representing over 22% of known families. Some DUFs are not named using the nomenclature due to popular usage but are nevertheless DUFs. The DUF designation is tentative, and such families tend to be renamed to a more specific name after a function is identified.
programmes have attempted to understand the function of DUFs through structure determination. The structures of over 250 DUF families have been solved. This work showed that about two thirds of DUF families had a structure similar to a previously solved one and therefore likely to be divergent members of existing protein superfamilies, whereas about one third possessed a novel protein fold. Some DUF families share remote sequence homology with domains that has characterized function. Computational work can be used to link these relationships. A 2015 work was able to assign 20% of the DUFs to characterized structural superfamilies. Pfam also continuously perform the assignment in "clan" superfamily entries.
Frequency and conservation
More than 20% of all protein domains were annotated as DUFs in 2013. About 2,700 DUFs are found in bacteria compared with just over 1,500 in eukaryotes. Over 800 DUFs are shared between bacteria and eukaryotes, and about 300 of these are also present in archaea. A total of 2,786 bacterial Pfam domains even occur in animals, including 320 DUFs.
Role in biology
Many DUFs are highly conserved, indicating an important role in biology. However, many such DUFs are not essential, hence their biological role often remains unknown. For instance, DUF143 is present in most bacteria and eukaryotic genomes. However, when it was deleted in Escherichia coli no obvious phenotype was detected. Later it was shown that the proteins that contain DUF143, are ribosomal silencing factors that block the assembly of the two ribosomal subunits. While this function is not essential, it helps the cells to adapt to low nutrient conditions by shutting down protein biosynthesis. As a result, these proteins and the DUF only become relevant when the cells starve. It is thus believed that many DUFs are only required under certain conditions.
Essential DUFs
Goodacre et al. identified 238 DUFs in 355 essential proteins, most of which represent single-domain proteins, clearly establishing the biological essentiality of DUFs. These DUFs are called "essential DUFs" or eDUFs.