When the fixed points are paired such that then it may be shown that the resulting curve is a continuous function of x. When the curve is continuous, it is not in general differentiable. In the remaining of this page, we will assume the curves are continuous.
Properties
De Rham curves are by construction self-similar, since The self-symmetries of all of the de Rham curves are given by the monoid that describes the symmetries of the infinite binary tree or Cantor set. This so-called period-doubling monoid is a subset of the modular group. The image of the curve, i.e. the set of points, can be obtained by an Iterated function system using the set of contraction mappings. But the result of an iterated function system with two contraction mappings is a de Rham curve if and only if the contraction mappings satisfy the continuity condition.
Classification and examples
Cesàro curves
Cesàro curves are De Rham curves generated by affine transformations conserving orientation, with fixed points and. Because of these constraints, Cesàro curves are uniquely determined by a complex number such that and. The contraction mappings and are then defined as complex functions in the complex plane by: For the value of, the resulting curve is the Lévy C curve.
Koch–Peano curves
In a similar way, we can define the Koch-Peano family of curves as the set of De Rham curves generated by affine transformations reversing orientation, with fixed points and. These mappings are expressed in the complex plane as a function of, the complex conjugate of : The name of the family comes from its two most famous members. The Koch curve is obtained by setting: while the Peano curve corresponds to:
General affine maps
The Cesàro–Faber and Peano–Koch curves are both special cases of the general case of a pair of affine linear transformations on the complex plane. By fixing one endpoint of the curve at 0 and the other at one, the general case is obtained by iterating on the two transforms and Being affine transforms, these transforms act on a point of the 2-D plane by acting on the vector The midpoint of the curve can be seen to be located at ; the other four parameters may be varied to create a large variety of curves. The blancmange curve of parameter can be obtained by setting, and. That is: and Since the blancmange curve of parameter is the parabola of equation, this illustrate the fact that in some occasion, de Rham curves can be smooth.
It is easy to generalize the definition by using more than two contraction mappings. If one uses n mappings, then the n-ary decomposition of x has to be used instead of the binary expansion of real numbers. The continuity condition has to be generalized in: Such a generalization allows, for example, to produce the Sierpiński arrowhead curve, by using the contraction mappings of an iterated function system that produces the Sierpiński triangle.