Cryoelectronics


In electronics, cryoelectronics or cryolectronics is the study of superconductivity under cryogenic conditions and its applications. It is also described as the operation of power electronic devices at cryogenic temperatures. Practical applications of this field is quite broad, although it is particularly useful in areas where cryogenic environment exists such as superconducting technologies and spacecraft design. It also became a special branch of cryophysics and cryotechnics and plays a role in operations that require high resolution and precision measurements.
Cryoelectronic devices include the SQUIDs or the superconducting quantum interference devices, which represent magnetic sensors of highest sensitivity. They serve as the backbone of applications that range from materials evaluation, geological and environmental prospecting, and medical diagnostics, among others.

Marketable Uses

A key factor in production of new technologies is whether it is cost effective and useful. Devices that make use of cryoelectronics and the applications of superconductivity such as computers, information transmission lines, and magnetocardiography have potential for commercial value outside of a few specific devices for singular purposes. At the same time, the presence of other devices made with highly specialized functions can be competitively marketed without having to rely on a large market.