In coordination chemistry, the first coordination sphere refers to the array of molecules and ions directly attached to the central metal atom. The second coordination sphere consists of molecules and ions that attached in various ways to the first coordination sphere.
First coordination sphere
The first coordination sphere refers to the molecules that are attached directly to the metal. The interactions between the first and second coordination spheres usually involve hydrogen-bonding. For charged complexes, ion pairing is important. In hexamminecobalt chloride, the cobalt cation plus the 6 ammonia ligands comprise the first coordination sphere. The coordination sphere of this ion thus consists of a central MN6core "decorated" by 18 N−H bonds that radiate outwards.
Second coordination sphere
Metal ions can be described as consisting of series of two concentric coordination spheres, the first and second. More distant from the second coordination sphere, the solvent molecules behave more like "bulk solvent." Simulation of the second coordination sphere is of interest in computational chemistry. The second coordination sphere can consist of ions, molecules and portions of a ligand backbone. Compared to the first coordination sphere, the second coordination sphere has a less direct influence on the reactivity and chemical properties of the metal complex. Nonetheless the second coordination sphere is relevant to understanding reactions of the metal complex, including the mechanisms of ligand exchange and catalysis.
Role in catalysis
Mechanisms of metalloproteins often invoke modulation of the second coordination sphere by the protein. For example, an amine cofactor in the second coordination sphere of some hydrogenase enzymes assists in the activation of dihydrogen substrate.
Solvent effects on colors and stability are often attributable to changes in the second coordination sphere. Such effects can be pronounced in complexes where the ligands in the first coordination sphere are stronghydrogen-bond donors and acceptors, e.g. respectively 3+ and Ferricyanide|3−. Crown-ethers bind to polyamine complexes through their second coordination sphere. Polyammonium cations bind to the nitrogen centres of cyanometallates.