Comparison of Chernobyl and other radioactivity releases
This article compares the radioactivity release and decay from the Chernobyl disaster with various other events which involved a release of uncontrolled radioactivity.
Chernobyl compared to background radiation
Natural sources of radiation are very prevalent in the environment, and come from cosmic rays, food sources, radon gas, granite and other dense rocks, and others. The collective radiation background dose for natural sources in Europe is about 500,000 man-Sieverts per year. The total dose from Chernobyl is estimated at 80,000 man-sieverts, or roughly 1/6 as much. However, some individuals, particularly in areas adjacent the reactor, received significantly higher doses.Chernobyl's radiation was detectable across Western Europe. Average doses received ranged from 0.02 mrem to 38 mrem.
Chernobyl compared with an atomic bomb
Far fewer people died as an immediate result of the Chernobyl event than the immediate deaths from radiation at Hiroshima. Chernobyl is eventually predicted to result in up to 4,000 total deaths from cancers, sometime in the future, according to the WHO and create around 41,000 excess cancers according to the International Journal of Cancer, with, depending on treatment, not all cancers resulting in death. Due to the differences in half-life, the different radioactive fission products undergo exponential decay at different rates. Hence the isotopic signature of an event where more than one radioisotope is involved will change with time."Compared with other nuclear events: The Chernobyl explosion put 400 times more radioactive material into the Earth's atmosphere than the atomic bomb dropped on Hiroshima; atomic weapons tests conducted in the 1950s and 1960s all together are estimated to have put some 100 to 1,000 times more radioactive material into the atmosphere than the Chernobyl accident."
The radioactivity released at Chernobyl tended to be more long-lived than that released by a bomb detonation hence it is not possible to draw a simple comparison between the two events. Also, a dose of radiation spread over many years is much less harmful than the same dose received over a short period.
The relative size of the Chernobyl release when compared with the release due to a hypothetical ground burst of a bomb similar to the Fat Man device dropped on Nagasaki.
Isotope | Ratio between the release due to the bomb and the Chernobyl accident |
90Sr | 1:87 |
137Cs | 1:890 |
131I | 1:25 |
133Xe | 1:31 |
A comparison of the gamma dose rates due to the Chernobyl accident and the hypothetical nuclear weapon.
The graph of dose rate as a function of time for the bomb fallout was done using a method similar to that of T. Imanaka, S. Fukutani, M. Yamamoto, A. Sakaguchi and M. Hoshi, J. Radiation Research, 2006, 47, Suppl A121-A127. Our graph exhibits the same shape as that obtained in the paper. The bomb fallout graph is for a ground burst of an implosion-based plutonium bomb which has a depleted uranium tamper. The fission was assumed to have been caused by 1 MeV neutrons and 20% occurred in the 238U tamper of the bomb. It was assumed, for the sake of simplicity, that no plume separation of the isotopes occurred between the detonation and the deposit of radioactivity. The following gamma-emitting isotopes are modeled 131I, 133I, 132Te, 133I, 135I, 140Ba, 95Zr, 97Zr, 99Mo, 99mTc, 103Ru, 105Ru, 106Ru, 142La, 143Ce, 137Cs, 91Y, 91Sr, 92Sr, 128Sb, and 129Sb. The graph ignores the effects of beta emission and shielding. The data for the isotopes was obtained from the Korean table of the isotopes. The graphs for the Chernobyl accident were computed by an analogous method. Note that in the event of a low altitude or ground bursted nuclear detonation that fractionation of the volatile and non volatile radionuclides occurs, also during the Chernobyl accident the ratio between the different elements released by the accident did change as a function of time.
A ground burst of a nuclear weapon creates considerably more local deposited fallout than the air bursts used at Hiroshima or Nagasaki. This is due in part to neutron activation of ground soil and greater amounts of soil being sucked into the nuclear fireball in a ground burst than in a high air burst. In the above neutron activation is neglected, and only the fission product fraction of the total activity resulting from the ground burst is shown.
Chernobyl compared with Tomsk-7
The release of radioactivity which occurred at Tomsk-7 in 1993 is another comparison with the Chernobyl release. During reprocessing activities, some of the feed for the second cycle of the PUREX process escaped in an accident involving red oil. According to the IAEA it was estimated that the following isotopes were released from the reaction vessel:- 106Ru 7.9 TBq
- 103Ru 340 GBq
- 95Nb 11.2 TBq
- 95Zr 5.1 TBq
- 137Cs 505 GBq
- 141Ce 370 GBq
- 144Ce 240 GBq
- 125Sb 100 GBq
- 239Pu 5.2 GBq
The size of the radioactive release at Tomsk-7 was much smaller, and while it caused moderate environmental contamination it did not cause any early deaths.
Chernobyl compared to Fukushima Daiichi
Chernobyl compared with the Goiânia accident
While both events released 137Cs, the isotopic signature for the Goiânia accident was much simpler. It was a single isotope which has a half-life of about 30 years. To show how the activity vs. time graph for a single isotope differs from the dose rate due to Chernobyl the following chart is shown with calculated data for a hypothetical release of 106Ru.Chernobyl compared with the Three Mile Island accident
Three Mile Island-2 was an accident of a completely different type from Chernobyl. Chernobyl was a design flaw-caused power excursion causing a steam explosion resulting in a graphite fire, uncontained, which lofted radioactive smoke high into the atmosphere; TMI was a slow, undetected leak that lowered the water level around the nuclear fuel, resulting in over a third of it shattering when refilled rapidly with coolant. Unlike Chernobyl, TMI-2's reactor vessel did not fail and contained almost all of the radioactive material. Containment at TMI did not fail. A small quantity of radioactive gases from the leak were vented into the atmosphere through specially designed filters under operator control. A government report concluded that the accident caused no increase in cancer rates for local residents.Chernobyl compared with criticality accidents
During the time between the start of the Manhattan project and the present day, a series of accidents have occurred in which nuclear criticality has played a central role. The criticality accidents may be divided into two classes. For more details see nuclear and radiation accidents. A review of the topic was published in 2000, by Los Alamos National Laboratory, May 2000. Coverage includes United States, Russia, United Kingdom, and Japan. Also available at , which also tries to track down documents referenced in the report.*
*
Process accidents
These accidents tend to lead to very high doses due to direct irradiation of the workers within the site, but due to the inverse square law the dose suffered by members of the general public tends to be very small. Also very little environmental contamination normally occurs as a result of these accidents.