Codazzi tensor


In the mathematical field of differential geometry, a Codazzi tensor is a symmetric 2-tensor whose covariant derivative is also symmetric. Such tensors arise naturally in the study of Riemannian manifolds with harmonic curvature or harmonic Weyl tensor. In fact, existence of Codazzi tensors impose strict conditions on the curvature tensor of the manifold. Also, the second fundamental form of an immersed hypersurface in a space form is a Codazzi tensor.

Definition

Let be a n-dimensional Riemannian manifold for, let be a symmetric 2-tensor field, and let be the Levi-Civita connection. We say that the tensor is a Codazzi tensor if
for all

Examples

Matsushima and Tanno showed that, on a Kähler manifold, any Codazzi tensor which is hermitian is parallel. Berger showed that, on a compact manifold of nonnegative sectional curvature, any Codazzi tensor h with trgh constant must be parallel. Furthermore, on a compact manifold of nonnegative sectional curvature, if the sectional curvature is strictly positive at least one point, then every symmetric parallel 2-tensor is a constant multiple of the metric.