The distribution of the unitary circular ensemble CUE is the Haar measure on the unitary groupU. If U is a random element of CUE, then UTU is a random element of COE; if U is a random element of CUE, then URU is a random element of CSE, where Each element of a circular ensemble is a unitary matrix, so it has eigenvalues on the unit circle: with for k=1,2,... n, where the are also known as eigenangles or eigenphases. In the CSE each of these n eigenvalues appears twice. The distributions have densitieswith respect to the eigenangles, given by on , where β=1 for COE, β=2 for CUE, and β=4 for CSE. The normalisation constantZn,β is given by as can be verified via Selberg's integral formula, or Weyl's integral formula for compact Lie groups.
Generalizations
Generalizations of the circular ensemble restrict the matrix elements of U to real numbers or to real quaternion numbers so that U is in the [symplectic groupSp. The Haar measure on the orthogonal group produces the circular real ensemble and the Haar measure on the symplectic group produces the circular quaternion ensemble. The eigenvalues of orthogonal matrices come in complex conjugate pairs and, possibly complemented by eigenvalues fixed at +1 or -1. For n=2m even and det U=1, there are no fixed eigenvalues and the phasesθk have probability distribution with C an unspecified normalization constant. For n=2m+1 odd there is one fixed eigenvalue σ=det Uequal to ±1. The phases have distribution For n=2m+2 even and det U=-1 there is a pair of eigenvalues fixed at +1 and -1, while the phases have distribution This is also the distribution of the eigenvalues of a matrix in Sp. These probability density functions are referred to as Jacobi distributions in the theory of random matrices, because correlation functions can be expressed in terms of Jacobi polynomials.
Calculations
Averages of products of matrix elements in the circular ensembles can be calculated using Weingarten functions. For large dimension of the matrix these calculations become impractical, and a numerical method is advantageous. There exist efficient algorithms to generate random matrices in the circular ensembles, for example by performing a QR decomposition on a Ginibre matrix.