Chemorepulsion
Chemorepulsion is the directional movement of a cell away from a substance. Of the two directional varieties of chemotaxis, chemoattraction has been studied to a much greater extent. Only recently have the key components of the chemorepulsive pathway been elucidated. The exact mechanism is still being investigated, and its constituents are currently being explored as likely candidates for immunotherapies.
Cell Migration Glossary |
• Chemotaxis Cellular response to an environmental substance with a directional movement. |
• Chemokinesis Cellular response to an environmental substance with a random, non-vectorial movement. |
• Chemoattraction Directional cell movement towards a substance |
• Chemorepulsion Directional cell movement away from a substance |
• Chemokines Secreted cell-signaling proteins able to induce chemotaxis in nearby cells. |
• Immunorepulsion The active movement of immune cells away from a substance |
History and etymology
The mechanism of the chemorepulsion of immune cells was first acknowledged by medical researchers at the Massachusetts General Hospital in Boston in early 2002. The phenomenon was originally referred to as "reverse chemotaxis," and later, “fugetaxis”. For a time, the words were used interchangeably before being replaced almost exclusively by “chemorepulsion.” While "chemorepulsion" applies to all cell types, the term "immunorepulsion" is gaining momentum as a more specific term that only applies to hematopoietic blood cell types that are involved in immune responses. Different cell types to which the term "immunorepulsion" could potentially be applied include: Myeloid lineage cells and Lymphoid lineage cells.Role in physiological processes
The chemorepulsion of immune cells was first postulated a priori based on the established migratory behavior of cells evidenced in several naturally occurring physiological processes: the development of the Central Nervous System, the establishment of immune-privileged sites, and thymic emigration.Central nervous system development
During the development of the Central Nervous System, chemokinetic agents influence the localization of neuronal cells by either attracting or repelling the growing axon. This mechanism of context-dependent bidirectionality serves as a valuable model of chemorepulsion that can be studied in vivo. Additionally, there is growing evidence that chemorepulsion is probably a key mechanism involved in regulating leukocyte motility. Many of the chemorepellents that affect neuronal cell migration, including netrins, semaphorins, slit ligands, and ephrins have recently been implicated in the motility of immune cells. For example, the Slit protein that mediates axonal chemorepulsion has also been shown to inhibit the directed migration of leuckocytes in response to chemoattractants. Other factors might also provide chemorepulsive effects on immune cells, and these inhibitory effects might be regulated by the tissue microenvironment.Immune-privileged sites
Certain body tissues are able to tolerate antigens without an inflammatory immune response. Immune privilege is thought to be an evolutionary adaptation to protect the most vital sensory organs and reproductive structures that would be otherwise severely impaired during an inflammatory response. Although these locations are often physically isolated or segregated from access by immune cells, there are some functionally significant characteristics of such environments that are unique, and could potentially be replicated to keep immune cells away from targeted areas. Known immunologically privileged sites include the:Characteristics that are particular to immune-privileged sites should be seriously considered when investigating candidates for immunorepulsion therapy. These characteristics include:
- Low expression of Classical MHC Class IA molecules.
- Expression of immunoregulatory Nonclassical MHC Class IB molecules.
- Increased expression of surface molecules that inhibit complement activation.
- Local production of immunosuppressive cytokines, such as TGF-β
- Presence of neuropeptides.
- Expression of Fas ligand that controls the entry of Fas-expressing lymphoid cells.
Thymic emigration
Role in pathological processes
Viral and bacterial immune evasion
have evolved various strategies of evasion to thwart the host’s mobilization of immune cells, some of which are relevant to immunrepulsion. For example, some microbes actively seek out and infect immune-privileged tissues where the immune response is not active. Others produce immunomodulatory proteins that interfere with the host’s normal immune system response. These proteins function by modulating elements of the host:- Complement system and inflammatory response
- Cytokine network
- Antigen processing and presentation pathway
Cancer immune evasion
cells leverage the chemorepulsion of immune cells to evade recognition and destruction by immune cells. Without a targeted immune response, the cancer cells can proliferate and even metastasize. Studies have been conducted to investigate which chemokines are secreted by tumors that allow them to evade response so diligently. One study showed that high expression of SDF-1 was responsible for the down-regulation of MHC class I molecules, which significantly interferes with tumor antigen recognition. Further investigations of high SDF-1 activity indicate that tumors eventually establish an immune privileged site through repulsion of tumor-specific lymphocytes.Potentially clinically relevant cancer chemokines include:
- IL-8: Many cancers have been found to produce and express IL-8. Binding of IL-8 to CXCR1 and CXCR2 receptors has been associated with tumor establishment.
- SDF-1: Other cancers express high levels of SDF-1, which stimulates tumor growth and disrupts normal immune cell trafficking.
Pharmacological relevance
Inflammation
is one of the first responses of the immune system to infection or irritation. The response is stimulated by chemical factors released by injured cells. These chemical factors induce all associated inflammatory symptoms by sensitizing pain receptors, causing vasodilation of the blood vessels at the scene, and attracting phagocytes.Neutrophils are the first to the scene, triggering other parts of the immune system by releasing factors to summon other leukocytes and lymphocytes. Other innate leukocytes include natural killer cells, mast cells, eosinophils, basophils, macrophages, and dendritic cells. These cells function in concert by identifying and eliminating pathogens that might cause infection.
As first responders, the innate immune cells cannot afford to be specific, and must respond to foreign substances in a generic way. Neutrophils, for example, contain toxic substances in their granules that kill or hinder the expansion of pathogens. The cells attack pathogens by releasing strong oxidizing agents including hydrogen peroxide, free oxygen radicals, and hypochlorite. Although the attack is effective against bacteria and fungi, the response can inadvertently inflict severe damage to the surrounding host tissue. The misregulation of innate immune cells plays a key role in promulgating inflammatory conditions.
Chemorepulsion is currently being explored as a practicable therapy for the prevention or resolution of unwanted inflammatory responses. A chemorepellent functions by conveying chemical signals to immune cells that instruct them to leave or stay away from a targeted area or tissue in order to restore the tissue to a normal state.