Centrosymmetric matrix


In mathematics, especially in linear algebra and matrix theory, a centrosymmetric matrix is a matrix which is symmetric about its center. More precisely, an n × n matrix A = is centrosymmetric when its entries satisfy
If J denotes the n × n matrix with 1 on the counterdiagonal and 0 elsewhere, then a matrix A is centrosymmetric if and only if AJ = JA. The matrix J is sometimes referred to as the exchange matrix.

Examples

An n × n matrix A is said to be skew-centrosymmetric if its entries satisfy Ai,j = -An−i+1,n−j+1 for 1 ≤ i,j ≤ n. Equivalently, A is skew-centrosymmetric if AJ = -JA, where J is the exchange matrix defined above.
The centrosymmetric relation AJ = JA lends itself to a natural generalization, where J is replaced with an involutory matrix K
or, more generally, a matrix K satisfying Km = I for an integer m > 1. The inverse problem for the commutation relation AK = KA of identifying all involutory K that commute with a fixed matrix A, has also been studied.
Symmetric centrosymmetric matrices are sometimes called bisymmetric matrices. When the ground field is the field of real numbers, it has been shown that bisymmetric matrices are precisely those symmetric matrices whose eigenvalues remain the same aside from possible sign changes following pre or post multiplication by the exchange matrix. A similar result holds for Hermitian centrosymmetric and skew-centrosymmetric matrices.