The Constituent Likelihood Automatic Word-tagging System is a program that performs part-of-speech tagging. It was developed in the 1980s at Lancaster University by the University Centre for Computer Corpus Research on Language. It has an overall accuracy rate of 96-97% with the latest version tagging around 100 million words of the British National Corpus.
History
A Part-Of-Speech Tagger is a piece of software that reads text in some language and assigns parts of speech to each word, such as noun, verb, adjective, etc., although generally computational applications use more fine-grained POS tags like 'noun-plural'. Developed in the early 1980s, CLAWS was built to fill the ever-growing gap created by always-changing POS necessities. Originally created to add part-of-speech tags to the LOB corpus of British English, the CLAWS tagset has since been adapted to other languages as well, including Urdu and Arabic. Since its inception, CLAWS has been hailed for its functionality and adaptability. Still, it is not without flaws, and though it boasts an error-rate of only 1.5% when judged in major categories, CLAWS still remains with c.3.3% ambiguities unresolved. Ambiguity arises in cases such as with the wordflies, and whether it should be classified as a noun or a verb. It's these ambiguities that will require the various upgrades and tagsets that CLAWS will endure.
CLAWS uses a Hidden Markov model to determine the likelihood of sequences of words in anticipating each part-of-speech label.
Sample output
This excerpt from Bram Stoker's Dracula has been tagged using both the CLAWS C5 and C7 tagsets. This is what a CLAWS output will generally look like, with the most likely part-of-speech tag following each word.
Tagsets
CLAWS1 tagset
The first tagset developed in CLAWS, CLAWS1 tagset, has 132 word tags. In terms of form and application, C1 tagset is similar to Brown Corpus tags. See Table of tags in C1 tagset .
CLAWS2 tagset
From 1983 to 1986, updated versions leading to CLAWS2 were part of a larger attempt to deal with aspects such as recognizing sentence breaks, in order to avoid the need for manual pre-processing of a text before the tags were applied, moving instead to optional manual post-editing to adjust the output of the automatic annotation, if needed. The CLAWS2 tasget has 166 word tags. See Table of tags in C2 tagset .
CLAWS4 tagset
The CLAWS4 was used for the 100-million-word British National Corpus. A general-purpose grammatical tagger, it is a successor of the CLAWS1 tagger. In tagging the BNC, the many rounds of work that went into CLAWS4 focused on making the CLAWS program independent from the tagsets. For example, the BNC project used two tagset versions: "a main tagset with 62 tags with which the whole of the corpus has been tagged, and a larger tagset with 152 tags, which has been used to make a selected 'core' sample corpus of two million words." The latest version of CLAWS4 is offered by UCREL, a research center of Lancaster University.
CLAWS5 tagset
The CLAWS5 tagset, which was used for BNC, has over 60 tags. See Table of tags in C5 tagset .
CLAWS6 tagset
The CLAWS6 tagset was used for the BNC sampler corpus and the COLT corpus. It has over 160 tags, including 13 determiner subtypes. See Table of tags in C6 tagset .
CLAWS7 tagset
The standard CLAWS7 tagset is used currently. It is only different in the punctuation tags when compared to the CLAWS6 tagset. See Table of tags in C7 tagset .
CLAWS8 tagset
CLAWS8 tagset was extended from C7 tagset with further distinctions in the determiner and pronoun categories, as well as 37 new auxiliary tags for forms of be, do, and have. See Table of tags in C8 tagset