Bird of prey
Birds of prey or raptors include species of bird that primarily hunt and feed on vertebrates that are large relative to the hunter. Additionally, they have keen eyesight for detecting food at a distance or during flight, strong feet equipped with talons for grasping or killing prey, and powerful, curved beaks for tearing flesh. The term raptor is derived from the Latin word , meaning to seize or take by force. In addition to hunting live prey, most also eat carrion, at least occasionally, and vultures and condors eat carrion as their main food source.
Although the term bird of prey could theoretically be taken to include all birds that primarily consume animals, ornithologists typically use the narrower definition followed in this page. Examples of birds of prey not encompassed by the ornithological definition include storks, herons, gulls, skuas, penguins, kookaburras, and shrikes, as well as the many songbirds that are primarily insectivorous. Some extinct predatory birds had talons similar to those of modern birds of prey, including mousebird relatives, Messelasturidae and some Enantiornithes, indicating possibly similar habits.
Common names
The common names for various birds of prey are based on structure, but many of the traditional names do not reflect the evolutionary relationships between the groups.- Eagles tend to be large birds with long, broad wings and massive feet. Booted eagles have legs and feet feathered to the toes and build very large stick nests. The bald eagle has become a symbol for the United States.
- Ospreys, a single species found worldwide that specializes in catching fish and builds large stick nests.
- Kites have long wings and relatively weak legs. They spend much of their time soaring. They will take live vertebrate prey, but mostly feed on insects or even carrion.
- The true hawks are medium-sized birds of prey that usually belong to the genus Accipiter. They are mainly woodland birds that hunt by sudden dashes from a concealed perch. They usually have long tails for tight steering.
- Buzzards are medium-large raptors with robust bodies and broad wings, or, alternatively, any bird of the genus Buteo.
- Harriers are large, slender hawk-like birds with long tails and long thin legs. Most use a combination of keen eyesight and hearing to hunt small vertebrates, gliding on their long broad wings and circling low over grasslands and marshes.
- Vultures are carrion-eating raptors of two distinct biological families: the Accipitridae, which occurs only in the Eastern Hemisphere; and the Cathartidae, which occurs only in the Western Hemisphere. Members of both groups have heads either partly or fully devoid of feathers.
- Falcons are medium-size birds of prey with long pointed wings. They belong to the family Falconidae, rather than the Accipitridae. Many are particularly swift flyers.
- Caracaras are a distinct subgroup of the Falconidae unique to the New World, and most common in the Neotropics – their broad wings, naked faces and appetites of a generalist suggest some level of convergence with either Buteo or the vulturine birds, or both.
- Owls are variable-sized, typically night-specialized hunting birds. They fly almost silently due to their special feather structure that reduces turbulence. They have particularly acute hearing.
- Seriemas, large South American birds with long, stitled legs. They are also the closest relatives to the extinct 'terror birds'.
- Secretary birds are large, mostly terrestrial birds with long, stilted legs. Endemic to Africa.
Some names have not generalised, and refer to single species : merlin, osprey.
Systematics
Historical classifications
The taxonomy of Carl Linnaeus grouped birds into orders, genera, and species, with no formal ranks between genus and order. He placed all birds of prey into a single order, Accipitres, subdividing this into four genera: Vultur, Falco, Strix, and Lanius. This approach was followed by subsequent authors such as Gmelin, Latham, and Turnton.Louis Pierre Veillot used additional ranks: order, tribe, family, genus, species. Birds of prey were divided into diurnal and nocturnal tribes; the owls remained monogeneric, whilst the diurnal raptors were divided into three families: Vulturini, Gypaëti, and Accipitrini.
Thus Veillot's families were similar to the Linnaean genera, with the difference that shrikes were no longer included amongst the birds of prey. In addition to the original Vultur and Falco, Veillot adopted four genera from Savigny: Phene, Haliæetus, Pandion, and Elanus. He also introduced five new genera of vultures and eleven new genera of accipitrines.
Modern systematics
The order Accipitriformes is believed to have originated 44 million years ago when it split from the common ancestor of the secretarybird and the accipitrid species. The phylogeny of Accipitriformes is complex and difficult to unravel. Widespread paraphylies were observed in many phylogenetic studies. More recent and detailed studies show similar results. However, according to the findings of a 2014 study, the sister relationship between larger clades of Accipitriformes was well supported.The diurnal birds of prey are formally classified into five families of two orders.
- Accipitridae: hawks, eagles, buzzards, harriers, kites, and Old World vultures
- Pandionidae: the osprey
- Sagittariidae: the secretarybird
- Falconidae: falcons, caracaras, and forest falcons
- Cathartidae: New World vultures, including condors
- Cariamidae: Seriemas
The secretary bird and/or osprey are sometimes listed as subfamilies of Acciptridae: Sagittariinae and Pandioninae, respectively.
Australia's letter-winged kite is a member of the family Accipitridae, although it is a nocturnal bird.
The nocturnal birds of prey – the owls – are classified separately as members of two extant families of the order Strigiformes:
- Strigidae: "typical owls"
- Tytonidae: barn and bay owls
Phylogeny
Migration
Migratory behaviour evolved multiple times within accipitrid raptors., Sicily, here seen from Dinnammare mount, Peloritani.
The earliest event occurred nearly 14 to 12 million years ago. This result seems to be one of the oldest dates published so far in the case of birds of prey. For example, a previous reconstruction of migratory behaviour in one Buteo clade with a result of the origin of migration around 5 million years ago was also supported by that study.
Migratory species of raptors may have had a southern origin because it seems that all of the major lineages within Accipitridae had an origin in one of the biogeographic realms of the Southern Hemisphere. The appearance of migratory behaviour occurred in the tropics parallel with the range expansion of migratory species to temperate habitats. Similar results of southern origin in other taxonomic groups can be found in the literature.
Distribution and biogeographic history highly determine the origin of migration in birds of prey. Based on some comparative analyses, diet breadth also has an effect on the evolution of migratory behaviour in this group, but its relevance needs further investigation. The evolution of migration in animals seems to be a complex and difficult topic with many unanswered questions.
A recent study discovered new connections between migration and the ecology, life history of raptors. A brief overview from abstract of the published paper shows that "clutch size and hunting strategies have been proved to be the most important variables in shaping distribution areas, and also the geographic dissimilarities may mask important relationships between life history traits and migratory behaviours. The West Palearctic-Afrotropical and the North-South American migratory systems are fundamentally different from the East Palearctic-Indomalayan system, owing to the presence versus absence of ecological barriers." Maximum entropy modelling can help in answering the question: why species winters at one location while the others are elsewhere. Temperature and precipitation related factors differ in the limitation of species distributions. "This suggests that the migratory behaviours differ among the three main migratory routes for these species" which may have important conservational consequences in the protection of migratory raptors.
Sexual dimorphism
Raptors are known to display patterns of sexual dimorphism. It is commonly believed that the dimorphisms found in raptors occur due to sexual selection or environmental factors. In general, hypotheses in favor of ecological factors being the cause for sexual dimorphism in raptors are rejected. This is because the ecological model is less parsimonious, meaning that its explanation is more complex than that of the sexual selection model. Additionally, ecological models are much harder to test because a great deal of data is required.Dimorphisms can also be the product of intrasexual selection between males and females. It appears that both sexes of the species play a role in the sexual dimorphism within raptors; females tend to compete with other females to find good places to nest and attract males, and males competing with other males for adequate hunting ground so they appear as the most healthy mate.
It has also been proposed that sexual dimorphism is merely the product of disruptive selection, and is merely a stepping stone in the process of speciation, especially if the traits that define gender are independent across a species. Sexual dimorphism can be viewed as something that can accelerate the rate of speciation.
In non-predatory birds, males are typically larger than females. However, in birds of prey, the opposite is the case. For instance, the kestrel is a type of falcon in which males are the primary providers, and the females are responsible for nurturing the young. In this species, the smaller the kestrels are, the less food is needed and thus, they can survive in environments that are harsher. This is particularly true in the male kestrels. It has become more energetically favorable for male kestrels to remain smaller than their female counterparts because smaller males have an agility advantage when it comes to defending the nest and hunting. Larger females are favored because they can incubate larger numbers of offspring, while also being able to breed a larger clutch size.