Bipolar electrochemistry


Bipolar electrochemistry is a phenomenon in electrochemistry based on the polarization of conducting objects in electric fields. Indeed, this polarization generates a potential difference between the two extremities of the substrate that is equal to the electric field value multiplied by the size of the object. If this potential difference is important enough, then redox reactions can be generated at the extremities of the object, oxidations will occur at one extremity coupled simultaneously to reductions at the other extremity. In a simple experimental setup consisting of a platinum wire in a weighing boat containing a pH indicator solution, a 30 V voltage across two electrodes will cause water reduction at one end of the wire and a pH increase and water oxidation at the anodic end and a pH decrease. The poles of the bipolar electrode also align themselves with the applied electric field.

Utilisations

The phenomenon of bipolar electrochemistry is known for several decades and is used in industry in some electrolytic reactors. The interest of the scientific community for this concept seems to increase a lot since Martin Fleischmann and co-workers demonstrated that water splitting was possible using micrometer-sized bipolar electrodes. Recently, several applications in such domains as synthesis of dissymmetrical micro- and nano-structures analytical chemistry material science, microelectronics and microobject propulsion have been developed.