Balanced prime


In number theory, a balanced prime is a prime number with equal-sized prime gaps above and below it, so that it is equal to the arithmetic mean of the nearest primes above and below. Or to put it algebraically, given a prime number, where is its index in the ordered set of prime numbers,
For example, 53 is the sixteenth prime; the fifteenth and seventeenth primes, 47 and 59, add up to 106, and half of that is 53; thus 53 is a balanced prime.

Examples

The first few balanced primes are
5, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103.

Infinitude

It is conjectured that there are infinitely many balanced primes.
Three consecutive primes in arithmetic progression is sometimes called a CPAP-3. A balanced prime is by definition the second prime in a CPAP-3. the largest known CPAP-3 has 10546 digits and was found by David Broadhurst. It is:
The value of n is not known.

Generalization

The balanced primes may be generalized to the balanced primes of order n. A balanced prime of order n is a prime number that is equal to the arithmetic mean of the nearest n primes above and below. Algebraically, given a prime number, where k is its index in the ordered set of prime numbers,
Thus, an ordinary balanced prime is a balanced prime of order 1. The sequences of balanced primes of orders 2, 3, and 4 are given as sequence in the OEIS, sequence in the OEIS, and sequence in the OEIS respectively.