Autonomic nervous system


The autonomic nervous system, formerly the vegetative nervous system, is a division of the peripheral nervous system that supplies smooth muscle and glands, and thus influences the function of internal organs. The autonomic nervous system is a control system that acts largely unconsciously and regulates bodily functions, such as the heart rate, digestion, respiratory rate, pupillary response, urination, and sexual arousal. This system is the primary mechanism in control of the fight-or-flight response.
The autonomic nervous system is regulated by integrated reflexes through the brainstem to the spinal cord and organs. Autonomic functions include control of respiration, cardiac regulation, vasomotor activity, and certain reflex actions such as coughing, sneezing, swallowing and vomiting. Those are then subdivided into other areas and are also linked to autonomic subsystems and the peripheral nervous system. The hypothalamus, just above the brain stem, acts as an integrator for autonomic functions, receiving autonomic regulatory input from the limbic system.
The autonomic nervous system has three branches: the sympathetic nervous system, the parasympathetic nervous system and the enteric nervous system. Some textbooks do not include the enteric nervous system as part of this system. The sympathetic nervous system is often considered the "fight or flight" system, while the parasympathetic nervous system is often considered the "rest and digest" or "feed and breed" system. In many cases, both of these systems have "opposite" actions where one system activates a physiological response and the other inhibits it. An older simplification of the sympathetic and parasympathetic nervous systems as "excitatory" and "inhibitory" was overturned due to the many exceptions found. A more modern characterization is that the sympathetic nervous system is a "quick response mobilizing system" and the parasympathetic is a "more slowly activated dampening system", but even this has exceptions, such as in sexual arousal and orgasm, wherein both play a role.
There are inhibitory and excitatory synapses between neurons. Relatively recently, a third subsystem of neurons that have been named non-noradrenergic, non-cholinergic transmitters have been described and found to be integral in autonomic function, in particular in the gut and the lungs.
Although the ANS is also known as the visceral nervous system, the ANS is only connected with the motor side. Most autonomous functions are involuntary but they can often work in conjunction with the somatic nervous system which provides voluntary control.

Structure

The autonomic nervous system is divided into the sympathetic nervous system and parasympathetic nervous system. The sympathetic division emerges from the spinal cord in the thoracic and lumbar areas, terminating around L2-3. The parasympathetic division has craniosacral “outflow”, meaning that the neurons begin at the cranial nerves and sacral spinal cord.
The autonomic nervous system is unique in that it requires a sequential two-neuron efferent pathway; the preganglionic neuron must first synapse onto a postganglionic neuron before innervating the target organ. The preganglionic, or first, neuron will begin at the “outflow” and will synapse at the postganglionic, or second, neuron's cell body. The postganglionic neuron will then synapse at the target organ.

Sympathetic division

The sympathetic nervous system consists of cells with bodies in the lateral grey column from T1 to L2/3. These cell bodies are "GVE" neurons and are the preganglionic neurons. There are several locations upon which preganglionic neurons can synapse for their postganglionic neurons:
  1. cervical ganglia
  2. thoracic ganglia and rostral lumbar ganglia
  3. caudal lumbar ganglia and sacral ganglia
These ganglia provide the postganglionic neurons from which innervation of target organs follows. Examples of splanchnic nerves are:
These all contain afferent nerves as well, known as GVA neurons.

Parasympathetic division

The parasympathetic nervous system consists of cells with bodies in one of two locations: the brainstem or the sacral spinal cord. These are the preganglionic neurons, which synapse with postganglionic neurons in these locations:
These ganglia provide the postganglionic neurons from which innervations of target organs follows. Examples are:
The sensory arm is composed of primary visceral sensory neurons found in the peripheral nervous system, in cranial sensory ganglia: the geniculate, petrosal and nodose ganglia, appended respectively to cranial nerves VII, IX and X. These sensory neurons monitor the levels of carbon dioxide, oxygen and sugar in the blood, arterial pressure and the chemical composition of the stomach and gut content. They also convey the sense of taste and smell, which, unlike most functions of the ANS, is a conscious perception. Blood oxygen and carbon dioxide are in fact directly sensed by the carotid body, a small collection of chemosensors at the bifurcation of the carotid artery, innervated by the petrosal ganglion.
Primary sensory neurons project onto “second order” visceral sensory neurons located in the medulla oblongata, forming the nucleus of the solitary tract, that integrates all visceral information. The nTS also receives input from a nearby chemosensory center, the area postrema, that detects toxins in the blood and the cerebrospinal fluid and is essential for chemically induced vomiting or conditional taste aversion. All this visceral sensory information constantly and unconsciously modulates the activity of the motor neurons of the ANS.

Innervation

Autonomic nerves travel to organs throughout the body. Most organs receive parasympathetic supply by the vagus nerve and sympathetic supply by splanchnic nerves. The sensory part of the latter reaches the spinal column at certain spinal segments. Pain in any internal organ is perceived as referred pain, more specifically as pain from the dermatome corresponding to the spinal segment.

Motor neurons

Motor neurons of the autonomic nervous system are found in ‘’autonomic ganglia’’. Those of the parasympathetic branch are located close to the target organ whilst the ganglia of the sympathetic branch are located close to the spinal cord.
The sympathetic ganglia here, are found in two chains: the pre-vertebral and pre-aortic chains. The activity of autonomic ganglionic neurons is modulated by “preganglionic neurons” located in the central nervous system. Preganglionic sympathetic neurons are located in the spinal cord, at the thorax and upper lumbar levels. Preganglionic parasympathetic neurons are found in the medulla oblongata where they form visceral motor nuclei; the dorsal motor nucleus of the vagus nerve; the nucleus ambiguus, the salivatory nuclei, and in the sacral region of the spinal cord.

Function

Sympathetic and parasympathetic divisions typically function in opposition to each other. But this opposition is better termed complementary in nature rather than antagonistic. For an analogy, one may think of the sympathetic division as the accelerator and the parasympathetic division as the brake. The sympathetic division typically functions in actions requiring quick responses. The parasympathetic division functions with actions that do not require immediate reaction. The sympathetic system is often considered the "fight or flight" system, while the parasympathetic system is often considered the "rest and digest" or "feed and breed" system.
However, many instances of sympathetic and parasympathetic activity cannot be ascribed to "fight" or "rest" situations. For example, standing up from a reclining or sitting position would entail an unsustainable drop in blood pressure if not for a compensatory increase in the arterial sympathetic tonus. Another example is the constant, second-to-second, modulation of heart rate by sympathetic and parasympathetic influences, as a function of the respiratory cycles. In general, these two systems should be seen as permanently modulating vital functions, in usually antagonistic fashion, to achieve homeostasis.
Higher organisms maintain their integrity via homeostasis which relies on negative feedback regulation which, in turn, typically depends on the autonomic nervous system. Some typical actions of the sympathetic and parasympathetic nervous systems are listed below.
Target organ/systemParasympatheticSympathetic
Digestive systemIncrease peristalsis and amount of secretion by digestive glandsDecrease activity of digestive system
LiverNo effectCauses glucose to be released to blood
LungsConstricts bronchiolesDilates bronchioles
Urinary bladder/ UrethraRelaxes sphincterConstricts sphincter
KidneysNo effectsDecrease urine output
HeartDecreases rateIncrease rate
Blood vesselsNo effect on most blood vesselsConstricts blood vessels in viscera; increase BP
Salivary and Lacrimal glandsStimulates; increases production of saliva and tearsInhibits; result in dry mouth and dry eyes
Eye Stimulates constrictor muscles; constrict pupilsStimulate dilator muscle; dilates pupils
Eye Stimulates to increase bulging of lens for close visionInhibits; decrease bulging of lens; prepares for distant vision
Adrenal MedullaNo effectStimulate medulla cells to secrete epinephrine and norepinephrine
Sweat gland of skinNo effectStimulate to produce perspiration

Sympathetic nervous system

Promotes a fight-or-flight response, corresponds with arousal and energy generation, and inhibits digestion
The parasympathetic nervous system has been said to promote a "rest and digest" response, promotes calming of the nerves return to regular function, and enhancing digestion. Functions of nerves within the parasympathetic nervous system include:
The enteric nervous system is the intrinsic nervous system of the gastrointestinal system. It has been described as "the Second Brain of the Human Body". Its functions include:
At the effector organs, sympathetic ganglionic neurons release noradrenaline, along with other cotransmitters such as ATP, to act on adrenergic receptors, with the exception of the sweat glands and the adrenal medulla:
A full table is found at Table of neurotransmitter actions in the ANS.

History

The specialised system of the autonomic nervous system was recognised by Galen. In 1665, Willis used the terminology, and in 1900, Langley used the term, defining the two divisions as the sympathetic and parasympathetic nervous systems.

Caffeine effects

is a bioactive ingredient found in commonly consumed beverages such as coffee, tea, and sodas. Short-term physiological effects of caffeine include increased blood pressure and sympathetic nerve outflow. Habitual consumption of caffeine may inhibit physiological short-term effects. Consumption of caffeinated espresso increases parasympathetic activity in habitual caffeine consumers; however, decaffeinated espresso inhibits parasympathetic activity in habitual caffeine consumers. It is possible that other bioactive ingredients in decaffeinated espresso may also contribute to the inhibition of parasympathetic activity in habitual caffeine consumers.
Caffeine is capable of increasing work capacity while individuals perform strenuous tasks. In one study, caffeine provoked a greater maximum heart rate while a strenuous task was being performed compared to a placebo. This tendency is likely due to caffeine's ability to increase sympathetic nerve outflow. Furthermore, this study found that recovery after intense exercise was slower when caffeine was consumed prior to exercise. This finding is indicative of caffeine's tendency to inhibit parasympathetic activity in non-habitual consumers. The caffeine-stimulated increase in nerve activity is likely to evoke other physiological effects as the body attempts to maintain homeostasis.
The effects of caffeine on parasympathetic activity may vary depending on the position of the individual when autonomic responses are measured. One study found that the seated position inhibited autonomic activity after caffeine consumption ; however, parasympathetic activity increased in the supine position. This finding may explain why some habitual caffeine consumers do not experience short-term effects of caffeine if their routine requires many hours in a seated position. It is important to note that the data supporting increased parasympathetic activity in the supine position was derived from an experiment involving participants between the ages of 25 and 30 who were considered healthy and sedentary. Caffeine may influence autonomic activity differently for individuals who are more active or elderly.