Artificial cartilage
Artificial cartilage is a synthetic material made of hydrogels or polymers that aims to mimic the functional properties of natural cartilage in the human body. Tissue engineering principles are used in order to create a non-degradable and biocompatible material that can replace cartilage. While creating a useful synthetic cartilage material, certain challenges need to be overcome. First, cartilage is an avascular structure in the body and therefore does not repair itself. This creates issues in regeneration of the tissue. Synthetic cartilage also needs to be stably attached to its underlying surface, bone. Lastly, in the case of creating synthetic cartilage to be used in joint spaces, high mechanical strength under compression needs to be an intrinsic property of the material.
Natural cartilage
There are three types of cartilage in the human body: fibrocartilage, hyaline cartilage and elastic cartilage. Each type of cartilage has varying concentrations of components such as proteoglycans, collagen and water which determine its functional properties and location in the body. Fibrocartilage is most often found in the intervertebral discs, elastic cartilage is found in the external ear and hyaline cartilage is found on many joint surfaces in the body. Replacement of hyaline cartilage is the most common application of synthetic cartilage.Articular cartilage
Cartilage is an avascular, aneural and alymphatic tissue within the body. The extracellular matrix of collagen is what gives it its high strength. The figure below shows the components of the ECM.Components
- Water: Water makes up around 80% of cartilage.
- Chondrocytes: Chondrocytes are the cells that produce and maintain the cartilaginous matrix. They are sparsely dispersed throughout cartilage and make up only about 2% of the total volume of cartilage. Chondrocytes vary in size, shape and concentration depending on their location in articular cartilage.
- Collagen: Collagen is a structural protein present in the extracellular matrix of cartilage. Collagen is composed of a triple helix structure of polypeptide chains and offers shear and tensile properties to the cartilage. Type II collagen is the most common type of collagen present in cartilage though types IX, X, XI, and XIV are also present. Overall, collagen is a stabilizing protein present in the ECM.
- Proteoglycans: Proteoglycans are the second most abundant macromolecule in the ECM of cartilage. Proteoglycans consist of a linker protein along with a core protein to which glycosaminoglycans attach. The most common GAGs are chondroitin sulfate and keratin sulfate. Proteoglycans attach to a central chain, usually hyaluronic acid, via a linker protein, to create larger proteoglycan aggregates. Proteoglycans are hydrophilic and therefore attract and restrain water molecules. This provides cartilage with its intrinsic ability to resist compression.
- Glycoproteins: Many other glycoproteins are present in cartilage ECM in small amounts that help maintain structure and organization. Specifically, lubricin helps to create a lubricating surface on the cartilage for easier joint mobility. Fibronectin and integrins other glycoproteins present that help in adhesion of chondrocytes to the ECM.
Structure
There are three structural zones in articular cartilage including a superficial tangential zone, a middle transitional zone and a deep zone. In the tangential zone, collagen fibers are aligned parallel to the surface and become gradually randomly aligned while moving into the deep zone. Collagen fibers in the superficial zone are aligned parallel to the surface in order to restrict shear stresses. Similarly, collagen fibers are aligned perpendicular to the surface in the deep zone in order to restrict compressive forces. Between bone and the deep zone lies calcified cartilage. Cell arrangement also varies between the zones, in deeper zones chondrocytes are stacked into columns while in the superficial zones they are arranged randomly. In the superficial regions the cells are also more elongated, while in deeper zones they are more spherical in nature.Artificial cartilage
Synthetic cartilage can be composed of many different materials that mimic its functional properties. Tissue engineering principles include the use of cells, growth factors, and synthetic scaffolds in order to do this.Components
- Cells: Chondrocytes are an obvious choice to use in the regeneration of cartilage due to their ability to secrete collagen and other ECM components necessary for the functional properties of cartilage. Chondrocytes can be harvested from a non-weight bearing joint space of an individual and cultured. Unfortunately, chondrocytes harvested from individuals may dedifferentiate and lose their properties. Additionally, aging chondrocytes show less metabolic activity and may not produce functional proteins or not enough functional proteins to create a desired ECM. Mesenchymal stem cells can also be used to create chondrocytes and make cartilage regeneration possible.
- Growth factors: Growth factors can be used to induce differentiation of a cell or induce secretion of matrix proteins. Common growth factors for the application of synthetic cartilage include Insulin-growth factor 1, Transforming Growth Factor β, Bone Morphogenic Proteins and Growth and Differentiation Factor 5.
Structure
- Scaffolds are used in tissue engineering to create an environment with similar mechanical properties of the native tissue. Scaffolds must be biocompatible and have high compressive strength. Scaffolds can be created from hydrogels, polymers or other material. Hydrogels are lightly cross-linked polymer networks swollen with water. Degree of crosslinking, porosity, and polymer composition can be tuned to create a hydrogel with similar properties to native cartilage.
Function
- Load bearing properties: One of the main functions of articular cartilage is that it has the capability to effectively transfer repeated cyclic loading to bone. This compressive load can be multiple times the body weight due to activities such as walking and running, however cartilage achieves this function by dissipating energy.
- Tribological properties: The second main function of articular cartilage is that it can have little to no wear over the course of the lifetime. It achieves this function by providing a lubricated surface with a coefficient of friction near zero. By creating a smooth surface, this lubrication prevents both cell and protein adhesion while also protecting the articular cartilage from damage.
After analyzing the load bearing and tribological properties of natural cartilage, these mechanical properties may be achieved depending on the structure and components of the hydrogel created, which will be discussed further in the Existing Methods section. These optimal properties can then be compared to the synthetic cartilage created. The properties of the hydrogels created can differ dramatically based on the components and the structure. Furthermore, it is extremely difficult to achieve all mechanical functions of natural cartilage, which is the end goal of synthetic cartilage.
When dealing with creating hydrogels, there are additional functions that must be considered. For example, the hydrogel must have the correct degradation properties in order to produce cell regeneration in the correct time frame that the hydrogel will take to degrade. Additionally, the hydrogel must not create toxic waste when degrading. These functions have been tested by comparing the stress, modulus and water content before and after implantation of different compositions of hydrogels.
Existing methods
There are many existing methods concerning regenerative therapies of cartilage as well as developing new artificial cartilage. First, regenerative therapies for osteoarthritis will be discussed. There have been substantial advances in recent years in the development of these regenerative therapies. These include anti-degradation, anti-inflammation, and cell and scaffold based cartilage regeneration.Anti-degradation
Many biological agents and chemical compounds have been used in order to prevent matrix-degrading enzymes that actively work to degrade cartilage. Monoclonal antibodies, most commonly studied being 12F4.1H7, work to specifically suppress ADAMTS-5-induced aggrecan release. This in turn helps to slow down cartilage degradation and osteophyte formation.Anti-inflammation
Inhibiting inflammatory mediators could help prevent osteoarthritis progression. Cytokines and chemokines are both crucial in stimulating cartilage catabolism and blocking these inflammatory mediators. Studies have shown that treatment with NF-κB pathway inhibitor BAY11-7082 restores IL-1b-inhibited chondrogenesis of cartilage stem cells and in turn postpones progression of OA. Similarly, ample research shows that combined blockade of TNFa and IL-17 with bispecific antibodies reveals an inhibition of both cytokines for reduced cartilage degradation and proinflammatory responses.Cell and scaffold-based cartilage regeneration
In order to restore joint cartilage after injury due to chondrocyte loss, cell therapy and chondrocyte replenishment has been shown to work in certain studies. Lying self-assembled MSCs on top of chondrocyte-laden hydrogel scaffolds has shown cell-mediated regeneration of hyaline-like cartilage. However, one drawback of this is that implantation of these scaffolds requires open-joint surgery to gather donor chondrocytes from non-weight-bearing joint cartilage areas. This makes it difficult to apply to the elderly.Along with regenerative therapies there are also several studies that show ways to develop new artificial cartilage.