Apolipoproteins are proteins that bind lipids to form lipoproteins. They transport lipids in blood, cerebrospinal fluid and lymph. The lipid components of lipoproteins are insoluble in water. However, because of their detergent-like properties, apolipoproteins and other amphipathic molecules can surround the lipids, creating alipoprotein particle that is itself water-soluble, and can thus be carried through water-based circulation. In addition to stabilizing lipoprotein structure and solubilizing the lipid component, apolipoproteins interact with lipoprotein receptors and lipid transport proteins, thereby participating in lipoprotein uptake and clearance. They also serve as enzymecofactors for specific enzymes involved in the metabolism of lipoproteins. Apolipoproteins are also exploited by hepatitis C virus to enable virus entry, assembly, and transmission. They play a role in viral pathogenesis and viral evasion from neutralizing antibodies.
Functions
In lipid transport, apolipoproteins function as structural components of lipoprotein particles, ligands for cell-surface receptors and lipid transport proteins, and cofactors for enzymes. Different lipoproteins contain different classes of apolipoproteins, which influence their function. Apolipoprotein A-I is the major structural protein component of high-density lipoproteins, although it is present in other lipoproteins in smaller amounts. Apolipoprotein A-IV is present in chylomicrons, very-low-density lipoproteins, and HDL. It is thought to act primarily in reverse cholesterol transport and intestinal lipid absorption via chylomicron assembly and secretion. ApoA-IV synthesized in hypothalamus is suggested to be a satiating factor which regulate the food intake of the rodent. Apolipoprotein B plays a particularly important role in lipoprotein transport being the primary organizing protein of many lipoproteins. Apolipoprotien C-III plays an important role in lipid metabolism specific in regulating the metabolism of triglyceride-rich lipoproteins. Apolipoprotein D is a soluble carrier protein of lipophilic molecules in neurons and glial cells within the central and peripheral nervous system and apoD can also modulate the stability and oxidation status of these molecules. Apolipoprotein E plays an important role in the transport and uptake of cholesterol by way of its high affinity interaction with lipoprotein receptors, including the low-density lipoprotein receptor. ApoE is the major lipoprotein in the central nervous system. Recent findings with apoA1 and apoE suggest that the tertiary structures of these two members of the human exchangeable apolipoprotein gene family are related. The three-dimensional structure of the LDL receptor-binding domain of apoE indicates that the protein forms an unusually elongated four-helix bundle that may be stabilised by a tightly packed hydrophobic core that includes leucine zipper-type interactions and by numerous salt bridges on the mostly charged surface. Basicamino acids important for LDL receptorbinding are clustered into a surface patch on one long helix. Apolipoprotein F is one of the minor apolipoprotein in blood plasma and it is a lipid transfer inhibit protein to inhibit cholesteryl ester transfer protein-mediated transfers of cholesteryl esters and triglycerides. Apolipoprotein M participates in the lipid metabolism and exhibit anti‑atherosclerotic functions and it is presented in high-density lipoprotein, low-density lipoprotein and very low-density lipoprotein.
Classes
There are multiple classes of apolipoproteins and several sub-classes:
Exchangeable apolipoproteins have the same genomic structure and are members of a multi-gene family that probably evolved from a common ancestral gene. ApoA1 and ApoA4 are part of the APOA1/C3/A4/A5 gene cluster on chromosome 11. Hundreds of genetic polymorphisms of the apolipoproteins have been described, and many of them alter their structure and function.
Synthesis and regulation
Apolipoprotein synthesis in the intestine is regulated principally by the fat content of the diet. Apolipoprotein synthesis in the liver is controlled by a host of factors, including dietary composition, hormones, alcohol intake, and various drugs. ApoB is an integral apoprotein whereas the others are peripheral apoproteins. Apolipoprotein synthesis such as apoA4 in hypothalamus involves in the integration of signals for regulation of food intake which is regulated by vagal nerve and cholecystokinin.
Disease
Apolipoprotein has been suggested to be implicated in several types of diseases and dysfunction in individual. Apolipoprotein C-I level increases in neuropathic pain and fibromyalgia patients which suggest it play an important role in occurrence of these conditions. Apolipoprotein C-III is a risk factor of cardiovascular disease. Accumulation of plasma TRLs caused by elevated apoC-III leading to hypertriglyceridaemia. Apolipoprotein D level increases in nervous system with a large number of neurologic disorders inclusive of Alzheimer's disease, schizophrenia, and stroke. Apolipoprotein E has been implicated in dementia and Alzheimer's disease. Apolipoprtoein is a component of lipoprotein and elevated plasma Lp level is a heritable, independent, and possibly causal risk factor for Atherosclerotic Cardiovascular Disease. The cholesterol-rich apoB-containing lipoproteins are also participate in the pathogenesis of ASCVD.