Anamorphic format
Anamorphic format is the cinematography technique of shooting a widescreen picture on standard 35 mm film or other visual recording media with a non-widescreen native aspect ratio. It also refers to the projection format in which a distorted image is "stretched" by an anamorphic projection lens to recreate the original aspect ratio on the viewing screen. The word anamorphic and its derivatives stem from the Greek anamorphoun, compound of morphé with the prefix aná. In the late 1990s and 2000s, anamorphic lost popularity in comparison to "flat" formats such as Super 35 with the advent of digital intermediates; however in the years since digital cinema cameras and projectors have become commonplace, anamorphic has experienced a considerable resurgence of popularity, due in large part to the higher base ISO sensitivity of digital sensors, which facilitates shooting at smaller apertures.
History
The process of anamorphosing optics was developed by Henri Chrétien during World War I to provide a wide angle viewer for military tanks. The optical process was called Hypergonar by Chrétien and was capable of showing a field of view of 180 degrees. After the war, the technology was first used in a cinematic context in the short film Construire un Feu in 1927 by Claude Autant-Lara.In the 1920s, phonograph and motion picture pioneer Leon F. Douglass also created special effects and anamorphic widescreen motion picture cameras. However, how this relates to the earlier French invention, and later development, is unclear.
Anamorphic widescreen was not used again for cinematography until 1952 when Twentieth Century-Fox bought the rights to the technique to create its CinemaScope widescreen technique. CinemaScope was one of many widescreen formats developed in the 1950s to compete with the popularity of television and bring audiences back to the cinemas. The Robe, which premiered in 1953, was the first feature film released that was filmed with an anamorphic lens.
Development
The introduction of anamorphic widescreen arose from a desire for wider aspect ratios that maximised overall image detail while retaining the use of standard cameras and projectors. The modern anamorphic format has an aspect ratio of 2.39:1, meaning the picture's width is 2.39 times its height,. The older Academy format 35 mm film has an aspect ratio of 1.375:1, which, when projected, is not as wide.Anamorphic widescreen was a response to a shortcoming in the non-anamorphic spherical widescreen format. With a non-anamorphic lens, the picture is recorded onto the film negative such that its full width fits within the film's frame, but not its full height. A substantial part of the frame area is thereby wasted, being occupied by a portion of the image which is subsequently matted-out and so not projected, in order to create the widescreen image.
To increase overall image detail, by using all the available area of the negative for only that portion of the image which will be projected, an anamorphic lens is used during photography to compress the image horizontally, thereby filling the full frame's area with the portion of the image that corresponds to the area projected in the non-anamorphic format. Up to the early 1960s, three major methods of anamorphosing the image were used: counter-rotated prisms, curved mirrors in combination with the principle of Total Internal Reflection, and cylindrical lenses. Regardless of method, the anamorphic lens projects a horizontally squeezed image on the film negative. This deliberate geometric distortion is then reversed on projection, resulting in a wider aspect ratio on-screen than that of the negative's frame.
Equipment
An anamorphic lens consists of a regular spherical lens, plus an anamorphic attachment that does the anamorphosing. The anamorphic element operates at infinite focal length, so that it has little or no effect on the focus of the primary lens it's mounted on but still anamorphoses the optical field. A cameraman using an anamorphic attachment uses a spherical lens of a different focal length than they would use for Academy format, and the anamorphic attachment squeezes the image to half-width. Other anamorphic attachments existed which would expand the image in the vertical dimension, so that a frame twice as high as it might have been filled the available film area. In either case, since a larger film area recorded the same picture the image quality was improved.The distortion introduced in the camera must be corrected when the film is projected, so another lens is used in the projection booth that restores the picture back to its correct proportions to restore normal geometry. The picture is not manipulated in any way in the dimension that is orthogonal to the one anamorphosed.
It may seem that it would be easier to simply use a wider film for recording movies. However, since 35 mm film was already in widespread use, it was more economically feasible for film producers and exhibitors to simply attach a special lens to the camera or projector, rather than invest in an entirely new film format, which would require new cameras, projectors, editing equipment and so forth.
Naming
was an earlier attempt to solve the problem of high-quality widescreen imaging, but anamorphic widescreen eventually proved more practical. Cinerama consisted of three simultaneously projected images side-by-side on the same screen. However, in practice the images never blended together perfectly at the edges. The system also suffered from various technical drawbacks, in that it required three projectors, a 6-perf-high frame, four times as much film, and three cameras, plus a host of synchronization problems. Nonetheless, the format was popular enough with audiences to trigger off the widescreen developments of the early 1950s. A few films were distributed in Cinerama format and shown in special theaters, but anamorphic widescreen was more attractive to the Studios since it could realize a similar aspect ratio and without the disadvantages of Cinerama's complexities and costs.The anamorphic widescreen format in use today is commonly called 'Scope', or 2.35:1. Filmed in Panavision is a phrase contractually required for films shot using Panavision's anamorphic lenses. All of these phrases mean the same thing: the final print uses a 2:1 anamorphic projector lens that expands the image by exactly twice the amount horizontally as vertically. This format is essentially the same as that of CinemaScope, except for some technical developments, such as the ability to shoot closeups without any facial distortion.
Optical characteristics
There are artifacts that can occur when using an anamorphic camera lens that do not occur when using an ordinary spherical lens. One is a kind of lens flare that has a long horizontal line, usually with a blue tint, and is most often visible when there is a bright light in the frame, such as from car headlights, in an otherwise dark scene. This artifact is not always considered a problem., and even has become associated with a certain cinematic look, and often emulated using a special effect filter in scenes shot with a non-anamorphic lens. Another common aspect of anamorphic lenses is that light reflections within the lens are elliptical, rather than round as in ordinary cinematography. Additionally, wide angle anamorphic lenses of less than 40 mm focal length produce a cylindrical perspective, which some directors and cinematographers, particularly Wes Anderson, use as a stylistic trademark., as simulated by this stitched panorama of Cavendish House, Leicester. Contrast the straight vertical plane with the curved horizontal plane.
Another characteristic of anamorphic lenses, because they stretch the image vertically, is that out-of-focus elements tend to blur more in the vertical direction. An out-of-focus point of light in the background appear as a vertical oval rather than as a circle. When the camera shifts focus, there is often a noticeable effect whereby objects appear to stretch vertically when going out of focus. However, the commonly cited claim that anamorphic lenses produce a shallower depth of field is not entirely true. Because of the cylindrical element in the lens, anamorphic lenses take in a horizontal angle of view twice as wide as a spherical lens of the same focal length. Because of this, cinematographers often use a 50 mm anamorphic lens when they would otherwise use a 25 mm spherical lens, or a 70 mm rather than a 35 mm, and so on.
A third characteristic, particularly of simple anamorphic add-on attachments, is "anamorphic mumps". For reasons of practical optics, the anamorphic squeeze is not uniform across the image field in any anamorphic system. This variation results in some areas of the film image appearing more stretched than others. In the case of an actor's face, when positioned in the center of the screen faces look somewhat like they have the mumps, hence the name for the phenomenon. Conversely, at the edges of the screen actors in full-length view can become skinny-looking. In medium shots, if the actor walks across the screen from one side to the other, he will increase in apparent girth. Early CinemaScope presentations in particular suffered from this. Panavision was the first company to produce an anti-mumps system in the late 1950s.
Panavision used a second lens which was mechanically linked to the focus position of the primary lens. This changed the anamorphic ratio as the focus changed, resulting in the area of interest on-screen having a normal-looking geometry. Later cylindrical lens systems used, instead, two sets of anamorphic optics: one was a more robust "squeeze" system, which was coupled with a slight expansion sub-system. The expansion sub-system was counter-rotated in relation to the main squeeze system, all in mechanical interlinkage with the focus mechanism of the primary lens: this combination changed the anamorphic ratio and minimized the effect of anamorphic mumps in the area of interest in the frame. Although these techniques were regarded as a fix for anamorphic mumps, they were actually only a compromise. Cinematographers still had to frame scenes carefully to avoid the recognizable side-effects of the change in aspect ratio.
Recent use
Although the anamorphic widescreen format is still in use as a camera format, it has been losing popularity in favour of flat formats, mainly Super 35. The decline in popularity can be attributed to the artifacts, distortions, speed, and expenses.An anamorphic lens is often slower than a similar spherical lens, and thus requires more light and makes shooting low-light scenes more difficult. The anamorphic-scope camera format does not preserve any of the image above or below the frame, so it may not transfer as well to narrower aspect ratios, such as or for full screen television, and would have to be pan and scanned as a result. Film grain has become less of a concern because of the availability of higher-quality film stocks and digital intermediates, although anamorphic format - due to its use of the full negative frame to record a smaller image – always yields higher definition than non-anamorphic format.
Anamorphic scope as a printed film format, however, is well established as a standard for widescreen projection. Regardless of the camera formats used in filming, distributed prints of a film with a 2.39:1 theatrical aspect ratio is always in anamorphic widescreen format. Due to many movie theaters around the world not needing to invest in special equipment to project this format, it has become standard equipment in many cinemas.
[|Aspect ratio]
One common misconception about the anamorphic format concerns the actual width number of the aspect ratio, as 2.35, 2.39 or 2.4. Since the anamorphic lenses in virtually all 35 mm anamorphic systems provide a 2:1 squeeze, one would logically conclude that a full academy gate would lead to a aspect ratio when used with anamorphic lenses. Due to differences in the camera gate aperture and projection aperture mask sizes for anamorphic films, however, the image dimensions used for anamorphic film vary from flat counterparts. To complicate matters, the SMPTE standards for the format have varied over time; to further complicate things, pre-1957 prints took up the optical soundtrack space of the print, which made for a ratio.The initial SMPTE definition for anamorphic projection with an optical sound track down the side ANSI PH22.106-1957 was issued in December 1957. It standardized the projector aperture at, which gives an aspect ratio of c.. The aspect ratio for this aperture, after a 2× unsqueeze, is, which rounded to the commonly used value '.
A new definition issued in October 1971 as ANSI PH22.106-1971. It specified a slightly smaller vertical dimension of for the projector aperture, to help make splices less noticeable to film viewers. After unsqueezing, this would yield an aspect ratio of c..
Four-perf anamorphic prints use more of the negative's available frame area than any other modern format, which leaves little room for splices. As a consequence, a bright line flashed onscreen when a splice was projected, and theater projectionists had been narrowing the vertical aperture to hide these flashes even before 1971. This new projector aperture size,, aspect ratio, made for an un-squeezed ratio of '. This is commonly referred to by the rounded value or.
The most recent revision, SMPTE 195-1993, was released in August 1993. It slightly altered the dimensions so as to standardize a common projection aperture width for all formats, anamorphic and flat. The projection aperture height was also reduced by in this modern specification to, aspect ratio, which is commonly rounded to, to retain the un-squeezed ratio of. The camera's aperture remained the same, only the height of the "negative assembly" splices changed and, consequently, the height of the frame changed.
Anamorphic prints are still often called 'Scope' or 2.35 by projectionists, cinematographers, and others working in the field, if only by force of habit. 2.39 is in fact what they generally are referring to, which is itself usually rounded up to 2.40. With the exception of certain specialist and archivist areas, generally 2.35, 2.39 and 2.40 mean the same to professionals, whether they themselves are even aware of the changes or not.
Lens makers and corporate trademarks
There are numerous companies that are known for manufacturing anamorphic lenses. The following are the most well known in the film industry:Origination
- Panavision is the most common source of anamorphic lenses, with lens series ranging from 20 mm to a 2,000 mm anamorphic telescope. The C-Series, which is the oldest lens series, are small and lightweight, which makes them very popular for steadicams. Some cinematographers prefer them to newer lenses because they are lower in contrast. The E-Series, of Nikon glass, are sharper than the C-Series and are better color-matched. They are also faster, but the minimum focus-distance of the shorter focal lengths is not as close. The E135mm, and especially the E180mm, are great close-up lenses with the closest minimum focus of any long Panavision anamorphic lenses. The Super Speed lenses, also by Nikon, are the fastest anamorphic lenses available, with T-stops between 1.4 and 1.8; there is even one T1.1 50mm, but, like all anamorphic lenses, they must be stopped-down for good performance because they are quite softly focused when wide open. The Primo and Close-Focus Primo Series are based on the spherical Primos and are the sharpest Panavision anamorphic lenses available. They are completely color-matched, but also very heavy: about. The G-Series performance and size comparable with E-Series, in lightweight and compact similar to C-Series. The T-Series, Panavision's latest anamorphic lens series, is designed for digital cameras initially, but also film camera compatible through specific re-engineering at Panavision.
- Vantage Film, designers and manufacturers of Hawk lenses. The entire Hawk lens system consists of 50 different prime lenses and 5 zoom lenses, all of them specifically developed and optically computed by Vantage Film. Hawk lenses have their anamorphic element in the middle of the lens, which makes them more flare-resistant. This design choice also means that if they do flare, one does not get the typical horizontal flares. The C-Series, which were developed in the mid-1990s, are relatively small and lightweight. The V-Series and V-Plus Series are an improvement over the C-Series as far as sharpness, contrast, barrel-distortion and close-focus are concerned. This increased optical performance means a higher weight, however. There are 14 lenses in this series—from 25 mm to 250 mm. The V-Series also have the closest minimum focus of any anamorphic lens series available and as such can rival spherical lenses. Vantage also offers a series of lightweight lenses called V-Lite. They are 8 very small anamorphic lenses, which are ideal for handheld and Steadicam while also giving an optical performance comparable to the V-Series and V-Plus lenses. In 2008 Vantage introduced the Hawk V-Lite 16, a set of new lenses for 16 mm anamorphic production, as well as the Hawk V-Lite 1.3× lenses, which make it possible to use nearly the entire image area of 3-perf 35 mm film or the sensor area of a 16:9 digital camera and at the same time provide the popular 2.39:1 release format.
- Carl Zeiss AG and ARRI developed their Master Anamorphic lens line, debuted on September 2012, to provide minimum distortion and faster aperture at T1.9. It's a totally new lens design which different from third-party modified Zeiss-based anamorphics such as JDC and Technovision.
- Cooke Optics also developed their Anamorphic/i lens line, providing T2.3 aperture and color-matched with other Cooke lens line, which marketed as their "Cooke Look" feature. Same as Zeiss, it's a totally new lens design which different from third-party modified Cooke-based anamorphics such as JDC and Technovision. Besides, Cooke also developed its Anamorphic/i Full Frame Plus in 1.8× squeeze ratio for full frame cameras.
- Angenieux: Angenieux first zoom for 35 mm film camera, the 35-140 mm, was equipped with a front anamorphic attachment built by Franscope. The 40-140 anamorphic was used on several Nouvelle Vague movies such Lola or Jules and Jim. Panavision adapted the Angenieux 10× zoom for anamorphic productions. The 50-500 APZA was part of the standard anamorphic production package supported by Panavision from mid 1960s to the end of the 1970s. It has been used in numerous movies including The Graduate, MASH, McCabe and Mrs Miller, Death in Venice and Jaws. In 2013 and 2014 Angenieux released a new series of high end anamorphic zooms. These lenses, the 30-72 and 56-152 Optimo A2S are compact and weighs less than 2.5 kg.
- Joe Dunton Camera : Manufacturer and rental house based in Britain and North Carolina, which adapts spherical lenses to anamorphic by adding a cylindrical element. Its most popular lenses are the Xtal Xpres series, which were built by Shiga Optics in Japan from old Cooke S2/S3 and Panchro lenses. They have also adapted Zeiss Super Speeds and Standards, as well as Canon lenses. JDC was purchased by Panavision in 2007.
- Elite Optics, manufactured by JSC Optica-Elite Company in Russia and sold in the United States by Slow Motion Inc.
- Technovision, a French manufacturer that, like JDC, has adapted spherical Cooke and Zeiss lenses to anamorphic. Technovision was purchased by Panavision in 2004.
- Isco Optics, a German company that developed the Arriscope line for Arri in 1989.
Projection
- ISCO Precision Optics is a manufacturer of theatrical cinema projection lenses.
- Panamorph is a manufacturer of hybrid cylindrical / prism based projection lenses specialized for the consumer home theater industry.
- Schneider Kreuznach, makers of anamorphic projection lenses. The company also manufactures add-on anamorphic adaptor lenses that can be mounted on digital video cameras.
Super 35 and Techniscope
However, with advancements in digital intermediate technology, the anamorphosing process can now be completed as a digital step with no degradation of image quality. Also, 3-perf and 2-perf pose minor problems for visual effects work. The area of the film in 4-perf work that is cropped out in the anamorphosing process nonetheless contains picture information that is useful for such visual effects tasks as 2D and 3D tracking. This mildly complicates certain visual effects efforts for productions using 3-perf and 2-perf, making anamorphic prints struck digitally from center cropped 4-perf Super 35 the popular choice in large budget visual effects driven productions.