Algebraic differential equation


In mathematics, an algebraic differential equation is a differential equation that can be expressed by means of differential algebra. There are several such notions, according to the concept of differential algebra used.
The intention is to include equations formed by means of differential operators, in which the coefficients are rational functions of the variables. Algebraic differential equations are widely used in computer algebra and number theory.
A simple concept is that of a polynomial vector field, in other words a vector field expressed with respect to a standard co-ordinate basis as the first partial derivatives with polynomial coefficients. This is a type of first-order algebraic differential operator.

Formulations

It is usually not the case that the general solution of an algebraic differential equation is an algebraic function: solving equations typically produces novel transcendental functions. The case of algebraic solutions is however of considerable interest; the classical Schwarz list deals with the case of the hypergeometric equation. In differential Galois theory the case of algebraic solutions is that in which the differential Galois group G is finite. This case stands in relation with the whole theory roughly as invariant theory does to group representation theory. The group G is in general difficult to compute, the understanding of algebraic solutions is an indication of upper bounds for G.