Aizerman's conjecture


In nonlinear control, Aizerman's conjecture or Aizerman problem states that a linear system in feedback with a sector nonlinearity would be stable if the linear system is stable for any linear gain of the sector. This conjecture was proven false but led to the sufficient criteria on absolute stability.

Mathematical statement of Aizerman's conjecture (Aizerman problem)

Consider a system with one scalar nonlinearity
where P is a constant n×n-matrix, q, r are constant n-dimensional vectors, ∗ is an operation of transposition, f is scalar function, and f=0. Suppose that the nonlinearity f is sector bounded, meaning that for some real and with, the function satisfies
Then Aizerman's conjecture is that the system is stable in large if all linear systems with f=ke, k ∈ are asymptotically stable.
There are counterexamples to Aizerman's conjecture such that nonlinearity belongs to the sector of linear stability and unique stable equilibrium coexists with a stable periodic solution—hidden oscillation
Strengthening of Aizerman's conjecture is Kalman's conjecture where in place of condition on the nonlinearity it is required that the derivative of nonlinearity belongs to linear stability sector.