Acantharea


The Acantharea are a group of radiolarian protozoa, distinguished mainly by their strontium sulfate skeletons.

Structure

Acantharian skeletons are composed of strontium sulfate crystals secreted by vacuoles surrounding each spicule or spine. Acantharians are the only marine organisms known to biomineralize strontium sulfate as the main component of their skeletons, making them quite unique. Unlike other radiolarians, whose skeletons are made of silica, acantharian skeletons do not fossilize, primarily because strontium sulfate is very scarce in seawater and the crystals dissolve after the acantharians die. The skeletons are made up of either ten diametric or twenty radial spicules. Diametric spicules cross the center of the cell, whereas radial spicules terminate at the center of the cell where they either form a tight or flexible junction depending on species.
The cell is divided into two regions: the endoplasm and the ectoplasm. The endoplasm, at the core of the cell, contains the main organelles, including many nuclei, and is delineated from the ectoplasm by a capsular wall made of a microfibril mesh. In symbiotic species, the algal symbionts are maintained in the endoplasm. The ectoplasm consists of cytoplasmic extensions used for prey capture and also contains food vacuoles for prey digestion. The ectoplasm is surrounded by a periplasmic cortex, also made up of microfibrils, but arranged into twenty plates, each with a hole through which one spicule projects. The cortex is linked to the spines by contractile myonemes, which assist in buoyancy control by allowing the ectoplasm to expand and contract, increasing and decreasing the total volume of the cell.

Classification by spine arrangement

The arrangement of the spines is very precise, and is described by what is called the Müllerian law, which can be described in terms of lines of latitude and longitude – the spines lie on the intersections between five of the former, symmetric about an equator, and eight of the latter, spaced uniformly. Each line of longitude carries either two tropical spines or one equatorial and two polar spines, in alternation. The way that the spines are joined together at the center of the cell varies and is one of the primary characteristics by which acantharians are classified. Acantharians with diametric spicules or loosely attached radial spicules are able to rearrange or shed spicules and form cysts.
The morphological classification system roughly agrees with phylogenetic trees based on the alignment of ribosomal RNA genes, although the groups are mostly polyphyletic. Holacanthida seems to have evolved first and includes molecular clades A, B, and D. Chaunacanthida evolved second and includes only one molecular clade, clade C. Arthracanthida and Symphacanthida, which have the most complex skeletons, evolved most recently and constitute molecular clades E and F.

Symbiosis

Many acantharians, including some in clade B and all in clades E & F, host single-celled algae within their inner cytoplasm. By participating in this photosymbiosis, acantharians are essentially mixotrophs: they acquire energy through both heterotrophy and autotrophy. The relationship may make it possible for acantharians to be abundant in low-nutrient regions of the oceans and may also provide extra energy necessary to maintain their elaborate strontium sulfate skeletons. It is hypothesized that the acantharians provide the algae with nutrients that they acquire by capturing and digesting prey in return for sugar that the algae produces during photosynthesis. It is not known, however, whether the algal symbionts benefit from the relationship or if they are simply being exploited and then digested by the acantharians.
Symbiotic Holacanthida acantharians host diverse symbiont assemblages, including several genera of dinoflagellates and a haptophyte. Clade E & F acantharians have a more specific symbiosis and primarily host symbionts from the haptophyte genus Phaeocystis, although they sometimes also host Chrysochromulina symbionts. Clade F acantharians simultaneously host multiple species and strains of Phaeocystis and their internal symbiont community does not necessarily match the relative availability of potential symbionts in the surrounding environment. The mismatch between internal and external symbiont communities suggests that acantharians can be selective in choosing symbionts and probably do not continuously digest and recruit new symbionts, and maintain symbionts for extended periods of time instead.

Life cycle

Adults are usually multinucleated. Reproduction is thought to take place by formation of swarmer cells, which may be flagellate. Not all life cycle stages have been observed. Study of these organisms has been hampered mainly by an inability to maintain these organisms in culture through successive generations.